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Multiple zeta values

Introduction

Common theme in number theory/arithmetic geometry: associate intrinsic
numbers (“periods”) to geometric objects

2mi

multiple zeta values

Pt \ {0,1, 00}

elliptic multiple zeta values

C/(z+zT)\ {0}



Multiple zeta values

Multiple zeta values

Definition
For natural numbers ki, ..., ko—1, ko > 2 define the multiple zeta value
1
lay k)= 3, - €R
0<m <...<mp

Also, let Z be the Q-vector space spanned by all multiple zeta values.

Proposition
Z is a Q-subalgebra of R.

Deligne, Drinfeld, Kontsevich ...

Multiple zeta values arise naturally from the monodromy of the
Knizhnik-Zamolodchikov connection Vikz on P¢ \ {0, 1, c0}.
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Multiple zeta values

Geometry of multiple zeta values |

Let xo, x1 formal, non-commuting variables, C{(xo, x1)) formal power series.

Knizhnik-Zamolodchikov connection

Vkz :=d —wkz, wKz =wo-Xo + w1 - X1,

dz
z—1"

where wy = %, w1 =

This connection is integrable: V%, = 0.

Monodromy map:

Tos : m(Pe\ {0,1,00}; b, a) — C{(x0, x1),
’y»—)l—&—Z//\wKz,
n=1"v7

for all a,b € PL\ {0,1,00}.



Multiple zeta values

Geometry of multiple zeta values Il

The canonical path from 0 to 1 is called “droit chemin” (dch).

0 1
The monodromy of Vkz along dch diverges, but can be regularized.

Definition (Drinfeld associator)

¢Kz(X0,X1) = (Tolflz)reg(dch) € (C«X(),Xl».

<

Proposition (Kontsevich, Le-Murakami)

We have

5 = SpanQ{¢Kz(x0,x1)|W | w € <Xo,X1>}.

. = ki—1
recisely, for w = X"~ "x1 ... X" X, ‘= ki+ ...+ kn, we hav
More precisely, for o= 0 and k := ki + ...+ ky, we have

kn—1 ki—1
¢KZ(XO7X1)|W: / </\ wo>/\w1/\.../\(/\ wo)/\wl
1>8> >85>0

= (=1)"Cke, .. ., kn).
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The elliptic KZB connection (Brown—Levin, Calaque—Enriquez—Etingof,
Levin—Racinet,. . .)

Let
EX = C/(Z+2r)\ {0}
be the once-punctured complex elliptic curve with modulus 7 € § () the upper
half-plane).
Definition (Brown—Levin)

The elliptic Knizhnik-Zamolodchikov-Bernard (KZB) connection is defined as

Vikzp :=d —wkzB, wkzp =2midr-a— Zw(k) ad“(a)(b) € Q'(EX)&C(a, b)),
k=0

Differential forms

The differential forms w®) € Q*(E) are defined as coefficients of the Laurent
expansion

27rira€l() (€+O‘) w Oé_
T (@0 (a) ©T Z :

at o = 0, where £ = s + r7 is the coordinate on EX.

6
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Monodromy of Vkzp

Since V%, = 0, we get a monodromy representation
T m(E) p) — C(a, b))

oo n
’Y’—>1+Z//\WKZB,
n=1"7
for every p € EX. It is uniquely determined on the generators a, B of m(EX; p).

A picture of EX
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The elliptic KZB associator

For p — 0, TX?B(a), TX*B(B) diverge, but can be regularized.

Definition (Enriquez)
Define A, B : $ — C((a, b)) to be the regularized limits

A(r) = lim T,%P(a),  B(r) = lim T,%(B).

Enriquez’'s elliptic KZB associator is the triple (®Pkz, A(7), B(7)).

Consider the Q-vector space EZ4 (resp. 5ZB) spanned by the coefficients of
A(7) (resp. of B(71)).

Proposition

Both £2* and £2® are Q-subalgebras of O($).

We call £Z4 (resp. £2B) the algebra of A-elliptic multiple zeta values (resp.
algebra of B-elliptic multiple zeta values).
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Algebras of elliptic multiple zeta values

What can we say about the structure of £24 and £2B?

Let 2 = {a;}ics be a set (an alphabet of letters), and define the shuffle Q-algebra
(Q(A), ) as follows: Its underlying vector space is

Q(A) := Spang{a;, ...a;, |a; € A}
The (commutative) product is given by the shuffle product
W = Q(A) ®o Q(A) — Q(A)

a;...a;, ® Ay .. Qi E a,-a(l) e a,-a(r+5),
OEY, s

where ¥, ; is the set of permutations of {1,...,r + s}, such that
o) <...<o M (r)and o (r+1) < ... <o} (r+s).

Example: a; LUl ajax = ajajax + ajajak + ajaka;.
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Elliptic multiple zeta values

The canonical embeddings

Now let 2 = €& := {ex }x>o0.

Theorem (M., Broedel-M.-Schlotterer)

There exist canonical embeddings of Q-algebras

Pt €28 < Q) ®¢ Z[(2mi) M,
PP E2P < Q&) ®g Z[(27i) 7.

Two crucial steps in the proof:

@ The differential equation for A(7) and B(7) (due to Enriquez), which
expresses their coefficients as Z[(27i) "']-linear combinations of iterated
Eisenstein integrals

1 T
5(2/(1, .. .,2kn;7') = W/ Ezkl(Tl)dT1 TANAAN EQkN(Tn)dTn7

where Ey is the holomorphic Eisenstein series of weight 2k for SL>(Z).

@ The C-linear independence of these iterated Eisenstein integrals (M.)
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A Lie algebra of derivations

Are ¥*, 48 surjective?

Let £ = IL(a, b) be the free Lie algebra on a, b, Der’(L) the set of all derivations
D: L — L, such that D([a, b]) = 0 and a"(D(b)) = 0.

Definition (Tsunogai, Nakamura, ..., Hain—-Matsumoto,

Calaque—Enriquez—Etingof, Pollack)

(i) For every k > 0, define a derivation 2 € Der®(£) such that
eax(a) = ad*(a)(b).

(ii) Let u = Lieg(e2x) C Der(L) be the Lie subalgebra generated by the exx.

Fact (lhara—Takao, Pollack)

u is not freely generated by the ex.
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A-elliptic multiple

The image of the decomposition map

The universal enveloping algebra U(u) is graded by giving every €5« degree one.
By abstract algebra, we have an embedding

Uu)Y = Q(&).

Since u is not freely generated, this image is a proper subspace of Q(€).

Theorem (M., Broedel-M.=Schlotterer)

The decomposition morphisms 9, % factor through U(u)":

Pt 2% s Uu)Y ®q Z[(2ri) 7],
PP 28 < Uu)Y ®@q Z[(2ri) 7M.

Not every linear combination of iterated Eisenstein integrals is contained in
Ez”, £2B] There are non-trivial constraints coming from relations in u.
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Relations in u

Example (Broedel-M.—Schlotterer)

The lhara—Takao relation in u is
[610,54] — 3[68, 86] =0.

Together with the preceding theorem, this implies that the double Eisenstein
integrals £(8,6;7) and £(10,4; 7) can occur in £2*, £2® only in the
combination
81 £(10,4;7)+ 35 £(8,6;7).
— -
3-(9:3) 75

Remark

Non-trivial relations in u come from period polynomials of modular forms, for
SLy(Z) (Hain—Matsumoto, Pollack).

For example, the above lhara—Takao relation comes from the even period
polynomial of some modular form of weight 12.
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A-elliptic multiple zeta values

The algebra £Z* has canonical generators. J

Definition (Enriquez)

For ki, ..., kn > 0, with ki, k, # 1, define
12k, ... ke T) = / o (WR)(t) AL A e (@E) (1)
0<t <...<t,<1

This has weight ki + ...+ k, and length n. We call I*(ki, ..., ky;7) an A-elliptic
multiple zeta value.

The definition can be extended to all k; > 0.

Proposition (M.)

We have £24 = SpanQ{IA(kl, ooy kni )}

14
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An example

A oy _3.80)
1*(0,1,0,0i7) = =375

+ % /T Eo(m1)dm A Eo(72)dm2 A Ea(73) — 2¢(4)d73
_ 5B | 6 ),
= _3(27['[)2 + (27_”-)2 ; n3 q 9

where Eo(7) := —1, and o/(n) = 3_, d"
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Relations between elliptic multiple zeta values

Many algebraic relations between /*(ki, ..., kn; 7). E.g.

12 (ko )™ (ko 7) = 12 (K, ko 7) + 12 (K2, K 7)),
1 (ki, ko; 7) = (—1)T2 1A (ko ko 7),

%/A(o;r) =1*0,0;7) = % €qQ,

27Ti4 >0 os(n n
IA(0,5;7-):/A(2’3;7_):_( 12) Z¥q~

n=1

Consider the component of £Z* of length n and weight k:
La(E27) = Spang {1 (ku, ..., ki T) [ki+ ...+ k =k, | < n}.

Problem

Compute the dimensions

Di := dimg(La(EZR)/La-1(E21)).

16 /30



Elliptic multiple zeta values F
-elliptic multiple zeta values

Length one

The differential equation in length one yields

Boy - (2mi)**

1*(2k; 7) = —2¢(2k) = ool

1*(2k+1;7) =0.

Q k=0,

Therefore, with the convention Lo(£2%) =
{0} else

1 k>2
ng _ > 2 even
0 else

4

The transcendence of 7 implies there are no Q-linear relations in length one in
different weights.
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Relations in length two

Relations between elliptic multiple zeta values can be written down compactly
using generating series

X, Xeir) = Y Pk ke )X X

Kiyeeo kn>0

Proposition (M.)

The following functional equations hold:

TIA(X1, Xo; 7) + T(Xo, X1;7) =0 mod L1(E2™)
TA(X1, Xo; 7) + T (Xa + Xo, —Xo; 7) + T(=Xa — Xo, X1;7) =0 mod L1(EZ%).

Comparing coefficients yields a family of Q-linear relations, called Fay-shuffle
relations.
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Length two

Theorem (M.)

(i) L2(E2™) =350 L2(E2K) is graded for the weight:

Lo(E2%) = D La(E27).

k>0
pell — 0 k even
“T 14 +1 kodd

(iii) The Fay-shuffle relations give all the Q-linear relations between the
I1* (K1, ko; 7) (modulo length one).

A priori, there are k + 2 A-elliptic multiple zeta values of weight k and length at
most two. (ii) tells us there are many relations among them.
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Elliptic multiple zeta values and special values of L-functions

L-functions of modular forms

C(kla"'ykn): Z ﬁ

o<m <...<mp
For n = 1, get special values of the Riemann zeta function ¢((s) (the prime
example of an L-function).

Proposition (Hecke)

Let f =32, a,q" be a modular form for SL>(Z) of weight k. The series
(%) an
)=
n=1

converges absolutely for (s) > k, and can be extended to a meromorphic
function on all of C.

For the Hecke-normalized Eisenstein series Egk(T) = 22(771)12* Ex(7), k > 2, one
gets _
L(Exk;s) = C(s)C(s — 2k + 1).

A

20
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Elliptic multiple zeta values and special values of L-functions

The constant term of the elliptic KZB associator

Let Aw :=lim;Ljoo A(T) and Boo := lim- 00 B(7).

Theorem (Enriquez)

We have
Ao = €™ Oky(7, 1) bz (7, 1),
Boo = Yxz(—y — t, t)e™ bz (y,1) ",
where y = fezﬂ%(g)_l(b), t = —[a, b].

The formal logarithms of A, Boo are Lie series
log(Ax), log(Bss) € L,

where L is the completion of £ = Lie(a, b) for its lower central series.
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Elliptic multiple zeta values and special values of L-functions

The relation to periods of Eisenstein series

Let LY = [L, L], and £® = [£D, LV)].

Meta-abelian quotient of L

L)LP =M /2® 5 £/ = C[[ad(a), ad(b)]] x (Ca & Cb).

Let log(Ax)Y, log(Bao ) be the images in C[[ad(a), ad(b)]].

The coefficients of log(As)®, log(Bo. )™ are, up to explicit powers of 27/ and

rational numbers, precisely the special values of L(Ezk7 s), for 1 <s <2k —1 (the
“periods” of Ep).

N
N



Elliptic multiple zeta values and special values of L-functions

Relation to (open) string amplitudes

time

What happens in between? )

<>; —

Genus expansion:

Rough mathematical description of amplitude computation

Integrate Green's functions (solutions to 990G ~¢ & with some extra condition) on
compact surfaces with boundaries (“worldsheets” ).
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Genus zero

@ only one compact surface with boundary: disk

boundary parametrization

(use SL2(R)-action to map three points to 0, 1, c0)

e Green's function Go(z, zj) ~c log |z — z]* (since
ddlog |z — z;|* = 218(zi — z)).
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The four-point amplitude at genus zero

After factoring out field theory subamplitudes, the result is

1
512/ 2512_1(1 —z)™dz
0

where s;; are certain variables (“Mandelstam variables") carrying physical
information.

L _ T(1+a)l(1+b)
a/()z (l—z)bdz_m

= exp (Z(—l)kéh(kk) (ak + b —(a+ b)k)>

(Relation between string amplitudes and (single) zeta values)

25 /30
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Genus one

<=

o Compact surfaces with boundary: cylinder (planar/non-planar) and Moebius
strip

@ Green's function is
2T

im(r) Im(& — &)°

Gi(&i, &, 7) = log |0-(& — &)I° —

Key observation

£ Gidé = w (relation with elliptic multiple zeta values!).

26 /30
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Computing the planar cylinder contribution at four points |

‘ ‘
parametrization
é

(SIS

Nl

Re(£)

§&1 =0 £283 &4

We are interested in computing

hosa(sj, 7) = / / / exp <Z siG(&i, &, 7) 0) dé,desde,.

0<€,<E3<E4<1 <J

Result (Broedel-Mafra—M.—Schlotterer)

The coefficients of hasa(sij, 7) are explicitly computable A-elliptic multiple zeta
values.

Key input: Fay identity for w (genus one analog of partial fraction
decomposition).
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Computing the planar cylinder contribution at four points |l

To third order in the sj, we have:
haza(si, 7) = 1°(0,0,0; 7) — 2/%(0,1,0,0; 7)(s12 + $23)
+21%(0,1,1,0,0; 7)(s12 + s33)
—21(0,1,0,1,0; 7)s1283 + . ..
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Summary of main results

@ Elliptic multiple zeta values are coefficients of the elliptic KZB associator
(regularized monodromy of the elliptic KZB connection).

@ They can be decomposed uniquely into iterated Eisenstein integrals. The
occurring linear combinations of iterated Eisenstein integrals are controlled by
a special Lie algebra of derivations, and ultimately by modular forms for
SLx(Z).

@ They satisfy interesting relations (Fay-shuffle relations), which can be
determined completely in some special cases.

© Their constant terms generalize special values of L-functions of Eisenstein
series.

@ Elliptic multiple zeta values appear in computations in string theory.
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2
0<n n 0<m<n mn

14(0,3,5;7) = g <Z 203(n) 4 7o5(n) — 909(n) 4"+ 1680 Z gs(mM(n_m)qn>
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