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Introduction

The topic of this thesis are elliptic multiple zeta values, which are an elliptic analogue
of the well-studied multiple zeta values. Elliptic multiple zeta values are given by
convergent power series in the variable q = e2πiτ (where τ denotes the canonical
coordinate on the upper half-plane H), whose coefficients are linear combinations
of multiple zeta values. In particular, they are holomorphic functions on the upper
half-plane, which degenerate to multiple zeta values at the cusp i∞ of H. As there
is a structural parallelism between multiple zeta values and elliptic multiple zeta
values, we begin by reviewing some facets of the theory of multiple zeta values
before describing their elliptic analogues.
Multiple zeta values are real numbers, given for positive integers k1, . . . , kn−1 ≥ 1
and kn ≥ 2 by the sum

ζ(k1, . . . , kn) =
∑

0<m1<...<mn

1
mk1

1 . . .mkn
n

. (0.1)

They are generalizations of the special values of the Riemann zeta function, and
are known to arise in a variety of different areas in mathematics and mathematical
physics, such as knot theory [53], quantum groups [30], the theory of motives [40],
perturbative quantum field theory [12], superstring theory [67], and others. In all
of these contexts, a central object of study is the Q-algebra Z generated by the
multiple zeta values: To describe Z as precisely as possible is one of the main topics
of research in multiple zeta value theory.
One way to study multiple zeta values is by realizing them as periods of certain
algebro-geometric objects [15, 29, 41]. This point of view has lead to a deep relation
between multiple zeta values and mixed Tate motives over Z, which puts strong
constraints on the algebraic structure of Z [16, 40, 74]. An important role is played
by the general notion of homotopy invariant iterated integral on a smooth manifold,
which has been developed extensively by Chen, and later by Hain in the context of
rational homotopy theory of algebraic varieties [25, 46]. The upshot is that multiple
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Introduction

zeta values can be written as homotopy invariant iterated integrals on P1\{0, 1,∞},
which relates the study of the algebra Z to the geometry of P1 \ {0, 1,∞} [26].
By a result of Kontsevich, multiple zeta values also occur as coefficients of the
Drinfeld associator [30], a formal power series, which describes the monodromy of
the Knizhnik-Zamolodchikov (KZ) equation known from conformal field theory [52].
The Drinfeld associator satisfies certain functional identities, which yield a family of
algebraic relations between multiple zeta values, related to representations of braid
Lie algebras. It is conjectured that these associator relations exhaust all algebraic
relations between multiple zeta values (cf. [2], §25.4) for the precise conjecture and
[36] for some recent progress).
The interpretation of multiple zeta values as periods on the one hand, and as the
monodromy of the KZ equation on the other hand has lead to several far-reaching
conjectures about multiple zeta values, some of which are presented in Chapter 1 (cf.
[2], §25.4 for a more detailed account). Although partial results towards a resolution
of these conjectures have been obtained, the algebraic structure of multiple zeta
values still awaits a definitive description.

On the other hand, elliptic multiple zeta values have been introduced in [32] as an
extension of the notion of multiple zeta value to elliptic curves. They are defined
by homotopy invariant iterated integrals on a once-punctured complex elliptic curve
E×τ = C/(Z + Zτ) \ {0}. Such iterated integrals have been studied in the context
of the de Rham homotopy theory of E×τ [23], as well as in the theory of universal
mixed elliptic motives [45]. In both contexts, they give rise to (multiple) elliptic
polylogarithms, which were first introduced by Bloch [9] in a special case, and later
extended and studied intensively by many people [6, 8, 23, 51, 54, 55, 80, 81].
Elliptic multiple zeta values are then obtained by evaluating these multiple elliptic
polylogarithms along the canonical paths α, β on E×τ , which correspond to the two
usual homology cycles on E×τ .
A second representation of elliptic multiple zeta values is as coefficients of the el-
liptic Knizhnik-Zamolodchikov-Bernard (KZB) associator [31]. In fact, this is the
approach to elliptic multiple zeta values, which is used in this thesis. The elliptic
KZB associator is essentially a triple (ΦKZ, A(τ), B(τ)) of formal power series in
non-commuting variables x0 and x1, which describes the regularized monodromy of
the elliptic KZB equation [24, 43, 55] along the paths α and β on E×τ alluded to
above. Here, ΦKZ denotes the Drinfeld associator [30], and the series A(τ) and B(τ)
are obtained by iterated integration of the elliptic KZB equation along the paths
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α resp. β. The relation between the elliptic KZB associator and multiple elliptic
polylogarithms now relies on a theorem of Brown and Levin [23], which states that
every homotopy invariant iterated integral on E×τ can be obtained from the elliptic
KZB equation.
The classical Kronecker series Fτ (ξ, α) = θ′τ (0)θτ (ξ+α)

θτ (ξ)θτ (α) [78, 82], where θτ (ξ) denotes the
odd Jacobi theta function, features prominently in the definition of the elliptic KZB
equation. Thus, the elliptic KZB associator is related to classical elliptic functions.
This relation, which has no analogue for multiple zeta values, is one of the key
features of elliptic multiple zeta values.
We now return to elliptic multiple zeta values. The coefficients of the power series
A(τ) and B(τ) span two Q-algebras

EZA = SpanQ{A(τ)|w |w ∈ 〈x0, x1〉}, (0.2)

EZB = SpanQ{B(τ)|w |w ∈ 〈x0, x1〉}, (0.3)

where 〈x0, x1〉 denotes the set of all monomials in the variables x0 and x1. We will
call EZA the algebra of A-elliptic multiple zeta values, and likewise EZB the algebra
of B-elliptic multiple zeta values.

Goal. Understand the structure of the algebras EZA and EZB.

In order to pursue this goal, the plan is to use the theory of multiple zeta values
as a guide. In fact, we will see that many algebraic properties of multiple zeta
values have analogues for elliptic multiple zeta values. In particular, the structure
of the Q-algebras EZA and EZB is reminiscent of the structure of the Q-algebra Z
of multiple zeta values.

Decomposition of elliptic multiple zeta values

A key result towards understanding the algebraic structure of elliptic multiple zeta
values is the fact that they satisfy a linear differential equation on the upper half-
plane H [31]. This differential equation identifies elliptic multiple zeta values as
special linear combinations of iterated integrals of Eisenstein series, which will be
called iterated Eisenstein integrals for short

E(2k1, . . . , 2kn; τ) =
∫ i∞

τ
E2k1(τ1)dτ1 . . . E2kn(τn)dτn, k1, . . . , kn ≥ 0, (0.4)

where for k ≥ 1, E2k(τ) = (2k−1)!
2(2πi)2k

∑
(m,n)∈Z2, (m,n)6=(0,0)

1
(m+nτ)2k denotes the holomor-

phic Eisenstein series, and we set E0 = −1. These iterated Eisenstein integrals are
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Introduction

a special case of the more general concept of iterated integrals of modular forms, or
iterated Shimura integrals, whose study was initiated by Manin [57] (in the case of
cusp forms) and was extended recently by Brown [20].
Together with a suitable asymptotic condition at the cusp i∞ given in terms of
multiple zeta values [31, 32], the differential equation yields a canonical decompo-
sition of elliptic multiple zeta values into linear combinations of iterated Eisenstein
integrals and multiple zeta values. Inspired by the appearance of elliptic multiple
zeta values in superstring theory [13], this decomposition has been studied first in
[14].
The decomposition of elliptic multiple zeta values into iterated Eisenstein integrals
greatly clarifies the algebraic structure of elliptic multiple zeta values. In order
to see this, let 〈E〉Q denote the Q-vector space spanned by the iterated Eisenstein
integrals. The shuffle product formula for iterated integrals [65] implies that 〈E〉Q is
in fact a Q-algebra. We also denote by T (e)∨ the graded dual of the tensor algebra
T (e) on the free Q-vector space spanned by the set e = {e0, e2, e4, . . .}. Elements
of T (e)∨ can thus be identified with linear combinations of words e∨2k1 . . . e∨2kn in the
dual letters e∨2k, i.e. e∨2k(e2l) = δk,l, and the product is the shuffle product (cf. [66],
I.4).

Theorem 1 (cf. Theorem 5.1.3). The Q-algebra 〈E〉Q is a free shuffle algebra. More
precisely, the morphism

T (e)∨ → 〈E〉Q (0.5)

e∨2k1 . . . e
∨
2kn 7→ E(2k1, . . . , 2kn; τ)

is an isomorphism of Q-algebras.

The theorem follows from linear independence of iterated Eisenstein integrals, proved
by the author in [58]. We note that by a result of Radford [63], it implies that 〈E〉Q
is a polynomial algebra in infinitely many variables, given by the Lyndon words on
the alphabet e ([66], Chapter 5).
We now return to elliptic multiple zeta values. It turns out that the decomposition
into linear combinations of iterated Eisenstein series is simplified if instead of the
algebras EZA and EZB, which were defined as the linear spans of the coefficients of
the series A(τ), B(τ), we consider the algebras

EZA = {(2πi)−d(w)A(τ)w |w ∈ 〈x0, x1〉}, (0.6)
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EZB = {(2πi)−d(w)B(τ)w |w ∈ 〈x0, x1〉}, (0.7)

where d(w) = degx0(w)−degx1(w). This has the effect of clearing powers of 2πi from
the denominators. Now combining the expansion of elliptic multiple zeta values into
iterated Eisenstein integrals with the isomorphism (0.5), we obtain embeddings

ιA : EZA
↪→ T (e)∨ ⊗Z[2πi], (0.8)

ιB : EZB
↪→ T (e)∨ ⊗Z (0.9)

of Q-algebras1. The definition of the morphisms ιA and ιB above are completely
canonical, and an explicit construction was given in [14]. Describing the image
of this map is equivalent to giving all linear combinations of iterated Eisenstein
integrals and multiple zeta values, which occur as elliptic multiple zeta values.
In this direction, it is proved in this thesis that both ιA and ιB factor through
a smaller subalgebra as follows. Let L be the free Lie algebra in two generators
x0, x1. There exists a distinguished Lie subalgebra ugeom ⊂ Der(L) of the algebra of
derivations on L, which is generated by derivations ε2k, for k ≥ 0 [60, 75]. These
derivations are “geometric”, in the sense that they describe the universal SL2(Z)-
monodromy on the once-punctured elliptic curve E×τ [45].
Since the universal enveloping algebra U(ugeom) is generated by one element in each
even degree, the universal property of the shuffle algebra T (e)∨ yields an embedding

U(ugeom)∨ ↪→ T (e)∨ (0.10)

of the graded dual of U(ugeom) into T (e)∨. As the generators ε2k are not free [45, 61],
the image of (0.10) is contained in a proper subspace of T (e)∨, which is cut out by
equations, which are orthogonal to the relations holding in U(ugeom) [14].

Theorem 2 (cf. Theorem 5.3.1). Both embeddings (0.8) and (0.9) factor through
U(ugeom)∨, i.e. we have

ιA : EZA
↪→ U(ugeom)∨ ⊗Z[2πi], (0.11)

ιB : EZB
↪→ U(ugeom)∨ ⊗Z. (0.12)

This result is interesting because of the relation between the Lie algebra ugeom and
modular forms for SL2(Z). It is known that non-trivial relations in the Lie algebra
ugeom are related to the existence of period polynomials for modular forms [45, 61].

1In contrast, the algebras EZA and EZB embed only into T (e)∨ ⊗Z[(2πi)−1]
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In the graded dual U(ugeom)∨, these relations become constraints on the image of the
embedding U(ugeom)∨ ↪→ 〈E〉Q. More concisely, the linear combinations of iterated
Eisenstein integrals which occur in the decomposition of elliptic multiple zeta values
are constrained by modular forms.
Although at the moment, we cannot describe the image of ιA and ιB completely,
we have obtained some partial results. In order to describe these, we introduce the
length decomposition of an elliptic multiple zeta value. For a fixed non-negative
integer n ≥ 0, we can, by the above, rewrite an elliptic multiple zeta value as a
linear combination of iterated Eisenstein integrals, and then project onto the iterated
Eisenstein integrals of length n. For an elliptic multiple zeta value, the highest such
n for which there is a non-zero contribution is called the highest length component
of the elliptic multiple zeta value. One can show that the highest length component
is always a Q-linear combination of iterated Eisenstein integrals, as opposed to
a general Z[2πi]-linear combination. Likewise, there is a notion of lowest length
component, which is contained in Z[2πi] (even in Z for B-elliptic multiple zeta
values). Denote by

ιgeom
A : EZA → U(ugeom)∨, (0.13)

ιgeom
B : EZB → U(ugeom)∨ (0.14)

the projections onto the highest length component and likewise by

ιζA : EZA → Z[2πi], (0.15)

ιζB : EZB → Z (0.16)

the projections onto the lowest length component.

Theorem 3 (cf. Theorem 5.4.10, Theorem 5.4.13 and Theorem 5.4.2). (i) The
morphism ιgeom

B is surjective.

(ii) The image of ιgeom
A is contained in a proper subspace of U(ugeom)∨, the “Fourier

subspace” (cf. Definition 5.4.11) corresponding to those iterated Eisenstein
integrals which have a Fourier expansion.

(iii) The morphism ιζB is surjective, while the image of the morphism ιζA is the
subspace

Q + 2πiZ[2πi] ⊂ Z[2πi]. (0.17)
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Towards a Broadhurst–Kreimer conjecture for A-elliptic multiple zeta
values

To a multiple zeta value ζ(k1, . . . , kn) as in (0.1), one can associate two integers,
namely the weight k1 + . . . + kn and the depth n. While the weight conjecturally
defines a grading in the sense that there are no non-trivial Q-linear relations be-
tween multiple zeta values of different weights, the depth is a rough measure for
the complexity of a multiple zeta value. An important conjecture on the number
of linearly independent multiple zeta values of a fixed weight and depth is due to
Broadhurst and Kreimer [12], which also implies an earlier conjecture of Zagier [84]
on the number of linearly independent multiple zeta values of a fixed weight.
The notions of weight and depth have analogues for elliptic multiple zeta values,
namely the weight and the length. In the case of A-elliptic multiple zeta values,
the analogy between length and depth is very tight, which is why we restrict to
A-elliptic multiple zeta values for now.
Denote by EZA

k the Q-vector subspace of EZA spanned by all A-elliptic multiple
zeta values of weight k. The following conjecture is the analogue of the well-known
weight grading conjecture for multiple zeta values (cf. Conjecture 1.1.1).

Conjecture. The subspaces EZA
k ⊂ EZA are in direct sum, i.e.

EZA =
⊕

k≥0
EZA

k . (0.18)

Contrary to the case of multiple zeta values, the Q-vector space EZA
k is in general

infinite-dimensional. However, the subspace Ln(EZA
k ), of A-elliptic multiple zeta

values of weight k and length at most n is finite-dimensional. In analogy with the
Broadhurst–Kreimer conjecture for multiple zeta values (cf. Conjecture 1.1.3), it is
natural to set the following

Goal. Find and prove a formula for

Dell
k,n := dimQ

[
Ln(EZA

k )/Ln−1(EZA
k )
]
, (0.19)

for all k, n ≥ 0.2

In this thesis, we prove a formula for Dell
k,n for n ≤ 2 and all k ≥ 0 and prove the

weight-grading conjecture above in the special case of length at most two. The
precise result is the following theorem, which has also been published by the author
in [59].

2 Here, we set L−1EZA
k = {0} for all k ≥ 0. We also note that LnEZA

0 = Q for all n.
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Theorem 4 (cf. Theorems 3.1.9, 4.6.1, and 4.2.1). (i) We have

Dell
k,1 =





1 if k ≥ 2 is even,

0 else.
(0.20)

and

Dell
k,2 =





0 if k is even,

⌊
k

3

⌋
+ 1 if k is odd.

(0.21)

(ii) The Q-vector subspaces L2(EZA
k ) ⊂ EZA are in direct sum.

For (i), the proof of the ≤-inequality proceeds in two steps. We first introduce the
Fay-shuffle space FSh2(d), a length two elliptic analogue of the double shuffle space
[48], and prove thatDell

k,2 ≤ FSh2(k−2) for all k ≥ 0. Then, we use the representation
theory of the symmetric group S3 to find that dimQ FSh2(k − 2) =

⌊
k
3

⌋
+ 1. This

part of the proof is structurally very reminiscent of work on the Broadhurst–Kreimer
conjecture [48, 49].
For the ≥-inequality, we use again the differential equation for elliptic multiple zeta
values, in the form given in [32]. This implies that the derivative of an elliptic
double zeta value is given by a Q[2πi]-linear combination of Eisenstein series. Since
the Eisenstein series are linearly independent over C, it is enough to study the
matrix of coefficients obtained from the derivatives of the A-elliptic double zeta
values IA(r, k − r), for 0 ≤ r ≤ bk3c. It turns out that the rank of this matrix is
large enough, i.e. is at least

⌊
k
3

⌋
+ 1, which yields the ≥-inequality, and thus proves

the theorem. The weight-grading conjecture in length two is also proved by the
differential equation, using in addition the transcendence of π.
Finally, we mention that we have also obtained a partial result in length three, cf.
Section 4.7.

The meta-abelian quotient of the elliptic KZB associator and periods of
Eisenstein series

The last result obtained in this thesis that we discuss in this introduction is an
analogue for the elliptic KZB associator (ΦKZ, A(τ), B(τ)) of Drinfeld’s formula ex-
pressing the Drinfeld associator ΦKZ in terms of the Gamma function ([30], §3, and
(1.30) in this thesis).

8



Let
A(τ) = log(A(τ)), B(τ) = log(B(τ)). (0.22)

These are both formal Lie series, in other words, A(τ),B(τ) ∈ L̂, where L̂ denotes
the graded completion of the free C-Lie algebra on two generators x0, x1 (cf. Ap-
pendix A.1), which is a topological Lie algebra with (completed) Lie bracket [·, ·].
We are interested in the meta-abelian quotient L̂/L̂(2) of L̂, where L̂(2) = [L̂(1), L̂(1)]
and L̂(1) denotes the commutator. With hindsight towards eliminating cumbersome
occurrences of 2πi from the formulae, we make a change of coordinates a := 2πix0

and b = x1.
It is known that there is a canonical isomorphism

L̂/L̂(2) ∼= (Ca⊕ Cb)⊕ C[[A,B]], (0.23)

of C-vector spaces (cf. Appendix E, Section 3). Thus an element f ∈ L̂/L̂(2) can be
identified with a pair

(f (0), f (1)), f (0) ∈ Ca⊕ Cb, f (1) ∈ C[[A,B]]. (0.24)

In particular, considering the images of A(τ) and B(τ) in L̂/L̂(2), we obtain pairs
of elements

(A(τ)(0),A(τ)(1)), (B(τ)(0),B(τ)(1)). (0.25)

It is easy to see that A(τ)(0) = −b and B(0)(τ) = a−τb. The computation of A(τ)(1)

and B(τ)(1) is more elaborate, and it turns out that both can be expressed using a
very particular subclass of the iterated Eisenstein integrals (0.4) and Riemann single
zeta values. The precise result is as follows.

Theorem 5 (cf. Appendix E, Theorem 1.2). Let A(1)
∞ be the value of A(τ)(1) at the

tangential base point −→1 ∞ at i∞ [20], and define B(1)
∞ likewise. We have:

(i)

A(τ)(1) = A(1)
∞ +

∑

m≥0, n≥1

2
(m+ n− 1)!αm,n(τ)

(
−B ∂

∂A

)n−1

Am+n−1B, (0.26)

where

A(1)
∞ = −


∑

k≥2
λkA

k−1 + 1
4B −

∑

k≥3,odd

ζ(k)
(2πi)kB

k


 (0.27)

λk := Bk
k! , and αm,n(τ) = −E({0}n−1,m + n + 1; τ) + Bm+n+1

2(m+n+1)E({0}n; τ). In
particular, αm,n(τ) = 0, if m+ n ≥ 1 is even.
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(ii)

B(τ)(1) = B(1)
∞ −

∑

r≥1
E({0}r; τ)

∑

m,n≥0
cm,n

[(
−B ∂

∂A

)r
AmBn

]

+

∑

k≥1

2
(2k − 2)!



E({0}r−1, 2k; τ) + 1

2k − 1E({0}r−2, 2k, 0; τ)




(0.28)

×
(
−B ∂

∂A

)r−1

A2k−1


,

where

B(1)
∞ = −


∑

k≥2
λkB

k−1 +
∑

k≥3, odd

ζ(k)
(2πi)kAB

k−1 +
∑

m,n≥2
λmλnA

mBn−1


 .

(0.29)
Here, we set E({0}−1, 2k, 0; τ) := 0, and cm,n is defined as the coefficient of
AmBn in B(1)

∞ .

Note that the “terms at infinity” A(1)
∞ and B(1)

∞ together retrieve the extended period
polynomials of Eisenstein series [82]. Written in homogeneous coordinates A,B, the
extended period polynomial rE2k(A,B) of the Eisenstein series E2k, for k ≥ 2, equals

rE2k(A,B) = ω+
E2k
p+
E2k

(A,B) + ω−E2k
p−E2k

(A,B), (0.30)

with

p+
E2k

(A,B) = A2k−2 −B2k−2 (0.31)

p−E2k
(A,B) =

∑

−1≤n≤2k−1
λn+1λ2k−1−nA

nB2k−2−n, (0.32)

where λk := Bk
k! , and the numbers ω±E2k

∈ C are given by ω+
E2k

= ζ(2k−1)
(2πi)2k−1ω

−
E2k

, ω−E2k
=

− (2k−2)!
2 . Strictly speaking, rE2k is not a polynomial, but lives in the slightly bigger

space ⊕−1≤n≤2k−1 C · AnB2k−2−n, hence the name “extended period polynomial”.

Theorem 6 (cf. Appendix E, Theorem 1.3). The extended period polynomial of the
Eisenstein series E2k equals

(2k − 2)!
2

(
Ã2k−2(A,B)+ + B̃2k−2(B,A)+ + Ã2k−2(A,B)− + B̃2k−2(A,B)−

)
,

(0.33)
where

Ã(A,B) = 1
B
A(1)
∞ (A,B), B̃(A,B) = 1

A
B(1)
∞ (A,B), (0.34)
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a subscript 2k − 2 denotes the homogeneous component of degree 2k − 2 and a
superscript +, resp. − denotes the invariants, resp. anti-invariants, with respect to
(A,B) 7→ (−A,B).

The interpretation of period polynomials of Eisenstein series as constant terms in
the elliptic KZB associator points to a relationship between elliptic multiple zeta
values and the theory of universal mixed elliptic motives [45]. More precisely, one
has the notion of period of a universal mixed elliptic motive, and the periods of
Eisenstein series are particularly simple examples of such periods (cf. [45], §9 and
[44] §11). It would be very interesting to find out the precise relationship between
elliptic multiple zeta values and periods of universal mixed elliptic motives.

Conclusion and future directions

We give a summary of the results of this thesis, and indicate some possible directions
for future research.

Decomposition of elliptic multiple zeta values

In this thesis, we have defined and studied two algebras of elliptic multiple zeta
values, EZA and EZB, as well as their variants EZA an EZB. In particular, we have
exhibited explicit embeddings

ιA : EZA
↪→ U(ugeom)∨ ⊗Z[2πi] ↪→ T (e)∨ ⊗Z[2πi] (0.35)

ιB : EZB
↪→ U(ugeom)∨ ⊗Z ↪→ T (e)∨ ⊗Z (0.36)

into a space of words in formal variables e2k, k ≥ 0, and with multiple zeta values
(including 2πi) as coefficients. These embeddings correspond to the representation
of elliptic multiple zeta values as linear combinations of iterated Eisenstein integrals
and multiple zeta values. A description of the image of these maps amounts to
identify elliptic multiple zeta values among iterated Eisenstein integrals and multiple
zeta values, and we have partially achieved this goal, by considering the image of
ιA (resp. the image of ιB) in two complementary quotients of U(ugeom)∨ ⊗ Z[2πi]
(resp. of U(ugeom)∨ ⊗ Z). A complete characterization of the images of ιA and ιB
will be the subject of a joint work with Lochak and Schneps [56].

11
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Length-graded A-elliptic multiple zeta values

As another aspect of the study of the Q-algebra EZA, we have also undertaken
a first step to state and prove an analogue of the Broadhurst–Kreimer conjecture
about the dimensions Dell

k,n of the spaces of (length-graded) A-elliptic multiple zeta
values. Unlike the situation for multiple zeta values, we have not been able to give
a conjectural formula for Dell

k,n. On the other hand, in contrast to the formulas for
the dimensions of depth-graded multiple zeta values predicted by the Broadhurst–
Kreimer conjecture, which are only known to give upper bounds, we have actually
proved a formula for Dell

k,2 for all k. It would be interesting to further pursue the
goal of finding (and eventually proving) a Broadhurst–Kreimer type conjecture for
elliptic multiple zeta values.

Multiple elliptic polylogarithms at torsion points and beyond

The elliptic multiple zeta values studied in this paper can be viewed as special
values of multiple elliptic polylogarithms [23], evaluated at the point 0 of an elliptic
curve. A possible venue for further research would be to study the special values
of multiple elliptic polylogarithms evaluated at torsion points of an elliptic curve,
i.e. points ξ = s+ rτ ∈ Eτ = C/(Z + Zτ), such that s and r are rational numbers.
We tentatively call this generalization of elliptic multiple zeta values twisted elliptic
multiple zeta values.
Extending the scope of elliptic multiple zeta values to twisted elliptic multiple zeta
values is the analogue of the passage from multiple zeta values to cyclotomic multiple
zeta values, which are the special values of multiple polylogarithms evaluated at
torsion points of the punctured complex plane C×, a.k.a roots of unity. Usually,
one restricts to N -torsion, where N is some positive integer, and one obtains N -
cyclotomic multiple zeta values, the case of N = 1 corresponding to the multiple
zeta values. The algebraic structure of the algebra of N -cyclotomic multiple zeta
values has, at least conjecturally, a similar structure as the algebra of multiple zeta
values. In particular, there is an analogue of the Zagier conjecture for N -cyclotomic
multiple zeta values [29]. For more on N -cyclotomic multiple zeta values, see the
articles [27, 38, 39].
Finally, since elliptic multiple zeta values are in some sense a genus one analogue
of multiple zeta values, a perhaps rather ambitious goal would be to find a good
analogue of multiple zeta values for curves of higher genera. A closely related notion
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should be multiple polylogarithms for higher genus curves, a definition of which was
proposed in [40].

Content

In Chapter 1, we give a brief introduction to multiple zeta values. In order to
streamline the presentation, we have chosen to focus on the results and conjectures
on multiple zeta values, whose analogues for elliptic multiple zeta values are studied
in this thesis. Then, in Chapter 2, we set the stage for the introduction of elliptic
multiple zeta values. First, we recall the definition of a classical Kronecker series
[78, 82], and of a certain family of differential one-forms on a once-punctured elliptic
curve [23], which are basic to the definition of elliptic multiple zeta values. We con-
clude the first chapter with introducing, following [31], the elliptic KZB-associator,
which will play the role of the generating series of elliptic multiple zeta values.
Chapter 3, introduces elliptic multiple zeta values and the Q-algebras generated by
them. We begin with the case of A-elliptic multiple zeta values, since the algebra
generated by A-elliptic multiple zeta values admits a rather simple presentation,
reminiscent of the algebra of multiple zeta values. The definition of A-elliptic mul-
tiple zeta values is borrowed from Enriquez [32], however, the notion of B-elliptic
multiple zeta values we use in this thesis is not exactly the one used in [32], although
it is inspired by Enriquez’s previous work [31]. Chapter 3 consists mainly of calcula-
tions and explicit formulae, for example we classify A-elliptic single zeta values (the
length one case) by giving explicit formulae in terms of powers of 2πi (Proposition
3.1.8).
Chapter 4 contains our work on the elliptic analogue of the Broadhurst–Kreimer
conjecture. Its content is essentially the paper [59], however the specific presentation
is slightly different in keeping with the overall thrust of this thesis. The main result
is the proof of Theorem 4.
In Chapter 5, we extend the study of Enriquez’s differential equation to all lengths.
This leads us naturally to study the decomposition of elliptic multiple zeta values
as linear combinations of iterated Eisenstein integrals and multiple zeta values. We
present partial results towards a solution of the problem of distinguishing elliptic
multiple zeta values among arbitrary linear combinations of iterated Eisenstein in-
tegrals and multiple zeta values. More precisely, we prove Theorems 2 and 3. These
results relate elliptic multiple zeta values to period polynomials of modular forms.
Chapter 5 can be seen simultaneously as a natural extension of the article [14], and
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as a precursor to a future work [56].
In Appendix A, we first collect some background on two notions, which are pervasive
throughout the entire thesis, namely Lie algebras on the one hand, and iterated
integrals on the other hand. None of the results presented there is original, and this
section is merely intended as a useful first reference, and as a guide to the literature
on these subjects.
The rest of the appendix reproduces a total of four papers by the author (two as a
co-author).
Appendix B contains the paper “Linear independence of indefinite iterated Eisen-
stein integrals”, in which we prove Theorem 1. A previous version had been uploaded
to the arXiv with identifier arXiv:1601.05743.
In Appendix C, we have the paper “Elliptic multiple zeta values and one-loop open
superstring amplitudes”, co-authored with J. Broedel, C.R. Mafra and O. Schlot-
terer. This is the first account of how elliptic multiple zeta values arise in string
theory. The paper has been published in the Journal of High Energy Physics, see
the bibliography item [13] for details. It is also available from the arXiv, identifier
arXiv:1412.5535v2, and Appendix C contains the arXiv version of the article.
Appendix D contains the paper “Relations between elliptic multiple zeta values and
a special derivation algebra”, co-authored with J. Broedel and O. Schlotterer. This
paper has been published in Journal of Physics A, see the bibliography item [14]
for details. Like Appendix C, Appendix D contains the arXiv version of the article,
which is available from the arXiv, identified arXiv:1507.02254v2.
Finally, Appendix E contains the paper “The meta-abelian elliptic KZB associator
and periods of Eisenstein series”, where we prove Theorems 5 and Theorem 6. This
paper has been uploaded to the arXiv with identifier arXiv:1608.00740.
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Chapter 1

Aspects of the theory of multiple
zeta values

In this chapter, we give a brief introduction to the algebra of multiple zeta values.
We have streamlined the presentation, so that it connects well with our own study on
elliptic multiple zeta values, which is undertaken in the main body of this thesis. For
a more exhaustive introduction to multiple zeta values, we refer to Waldschmidt’s
lecture notes [76]; see also Deligne’s Bourbaki talk [28] for a thoroughly geometric
perspective on multiple zeta values.

1.1 The conjectures of Zagier and Broadhurst–Kreimer

For integers k1, . . . , kn ≥ 1 with kn ≥ 2, one defines the multiple zeta value1

ζ(k1, . . . , kn) =
∑

0<m1<...<mn

1
mk1

1 . . .mkn
n

. (1.1)

The multiple zeta value ζ(k1, . . . , kn) is said to have weight k1 + . . .+ kn and depth
n. One also includes the case n = 0, by setting ζ() = 1. One denotes by

Z := SpanQ{ζ(k1, . . . , kn)} ⊂ R (1.2)

the Q-vector space spanned by all multiple zeta values, which is in fact even a Q-
subalgebra of R: the product of any two multiple zeta values can again be written
as a Q-linear combination of multiple zeta values [48].

1The order of summation varies in the literature. Our conventions are compatible for example
with [40] and [16]
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Chapter 1. Aspects of the theory of multiple zeta values

The Q-algebra Z carries extra structure, corresponding to the notions of weight and
depth of multiple zeta values. First, for every k ≥ 0, define the subspace

Zk := SpanQ{ζ(k1, . . . , kn) | k1 + . . .+ kn} ⊂ Z (1.3)

of multiple zeta values of weight k. The Q-algebra structure on Z is compatible
with the weight in the sense that Zk · Zk′ ⊂ Zk+k′ , for all k, k′ ≥ 0. The following
conjecture is well-known, see for example [40], Conjecture 1.1a).

Conjecture 1.1.1 (“Weight-grading conjecture”). The subspaces Zk ⊂ Z are in
direct sum, i.e.

Z =
⊕

k≥0
Zk. (1.4)

In order to appreciate the strength of this conjecture, note that it immediately
implies the transcendence of all special values ζ(2k+1) of the Riemann zeta function
at positive odd integers2. Indeed, if P (X) is a polynomial with Q-coefficients, then
the equation P (ζ(2k+1)) = 0 yields a Q-linear relation between multiple zeta values
of different weights, hence P (X) ≡ 0 by the weight-grading conjecture. However,
none of the ζ(2k + 1) has been proven to be transcendental so far, the strongest
result in this direction being Apéry’s theorem [3] that ζ(3) /∈ Q.
Another fundamental conjecture gives a precise formula for the dimension dimQZk
of the weight k-component of Z [84].

Conjecture 1.1.2 (Zagier conjecture). Let (dk)k≥0 be the sequence, defined recur-
sively by

dk = dk−2 + dk−3, k ≥ 3 (1.5)

with initial conditions d0 = d2 = 1 and d1 = 0. Then

dimQZk = dk. (1.6)

Equivalently, we have
∑

k≥0
(dimQZk)xk = 1

1− x2 − x3 . (1.7)

A further refinement of the Zagier conjecture involves the depth, and is due to
Broadhurst and Kreimer [12, 48]. For n ≥ 0, let

Z(n)
k = SpanQ{ζ(k1, . . . , kr) ∈ Zk | r ≤ n} (1.8)

2The transcendence of the even values follows from Euler’s result that ζ(2k) ∈ Q× · π2k, along
with the transcendence of π.
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1.2. Towards a conceptual understanding of the conjectures

be the subspace of Zk spanned by multiple zeta values of depth at most n (we also
set Z(−1)

k := {0} for all k). Then the dimension of the quotient space Dk,n :=
dimQ(Z(n)

k /Z(n−1)
k ) equals the cardinality of a basis of multiple zeta values of weight

k and depth n, which cannot be expressed using multiple zeta values of weight k
and depth strictly smaller than n.

Conjecture 1.1.3 (Broadhurst–Kreimer conjecture, Version 1). We have
∑

k,n≥0
Dk,nx

kyn = 1 + E(x)y
1−O(x)y + S(x)y2 − S(x)y4 , (1.9)

where E(x) = x2

1−x2 , O(x) = x3

1−x2 and S(x) = x12

(1−x4)(1−x6) .

Upon setting y = 1, the Broadhurst–Kreimer conjecture retrieves the Zagier con-
jecture (1.7). Also, note that the series S(x) occurring in the Broadhurst–Kreimer
conjecture is precisely the generating series of the dimensions of the space of cusp
forms for SL2(Z). Explanations of this phenomenon are given in [20, 37, 45, 68].
The Broadhurst–Kreimer conjecture has another facet, which is related to the prob-
lem of determining the number of algebra generators of Z. In order to formulate
it, let I = ⊕

k≥1Zk be the ideal of Z, consisting of multiple zeta values of strictly
positive degree (the augmentation ideal of Z). The square I2 is then the ideal of all
(non-trivial) products in Z. Also, define for k, n ≥ 0 the Q-vector space

M(n)
k = Z(n)

k /(Z(n−1)
k + Z(n)

k ∩ I2). (1.10)

This is the space of all multiple zeta values of depth equal to n and weight equal to
k, which cannot be written as products of other multiple zeta values of depths ≤ n.
Hence, gk,n := dimQM(n)

k equals the number of algebra generators of Z of depth n
and weight k.

Conjecture 1.1.4 (Broadhurst–Kreimer conjecture, Version 2). We have
∑

k,n≥0
Dk,nx

kyn = (1 + E(x)y)
∏

k≥3, n≥1

1
(1− xkyn)gk,n . (1.11)

1.2 Towards a conceptual understanding of the conjectures

Although so far none of the conjectures described in the last section have been settled
completely, there have been some advances towards a solution. Concerning the
Zagier conjecture, Conjecture 1.1.2, the following theorem was proved independently
by Deligne-Goncharov [29] and by Terasoma [74].
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Chapter 1. Aspects of the theory of multiple zeta values

Theorem 1.2.1 (Deligne-Goncharov, Terasoma). Let dk be the sequence defined in
(1.5). We have

dimQZk ≤ dk, (1.12)

for all k ≥ 0.

Both proofs use elaborate techniques from algebraic geometry, most prominently
the category MT (Z) of mixed Tate motives over Z [2, 26, 29, 39]. It is known [26,
29, 39] that the category MT (Z) is equivalent to the category of finite-dimensional
representations of a pro-affine algebraic group GMT (Z), whose affine ring of functions
is (non-canonically) isomorphic to

HMT (Z) := Q〈F〉 ⊗Q[f1, f
−1
1 ], F = {f3, f5, f7, . . .}. (1.13)

Here, Q〈F〉 denotes the free shuffle algebra on the set F [66], and the fi have
weight i. The algebra HMT (Z) is graded for the weight, and one can show that the
subalgebra

HMT (Z)+ := Q〈F〉 ⊗Q[f2] ⊂ HMT (Z), f2 := −f
2
1

24 (1.14)

satisfies the Zagier conjecture, in the sense that the sequence (dimQHMT (Z)+
k )k≥0 of

its graded components satisfies the recursion (1.5). As a consequence, the following
conjecture (cf, [40], Conjecture 1.1b)) implies both the weight-grading conjecture,
and the Zagier conjecture for multiple zeta values.

Conjecture 1.2.2 (Goncharov). There exists an isomorphism of Q-algebras

φ : Z ∼=−→ HMT (Z)+ , (1.15)

which respects the weight, i.e. for every k ≥ 0, the morphism φ restricts to an
isomorphism

φk : Zk
∼=−→ HMT (Z)+

k (1.16)

between the respective weight k-components.

Brown [16] has proved that Goncharov’s conjecture holds upon replacing Z by the
algebra of motivic multiple zeta values Zm [16, 21, 39]. Intuitively, a motivic multiple
zeta value ζm(k1, . . . , kn) is the “Galois orbit” of the multiple zeta value ζ(k1, . . . , kn)
under the action of the group GMT (Z). We will not go further into the slightly delicate
construction, and instead refer to [16, 21] for a precise definition.
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1.2. Towards a conceptual understanding of the conjectures

Theorem 1.2.3 (Brown). There exists a (non-canonical) isomorphism of graded
Q-algebras

φm : Zm ∼=−→ HMT (Z)+ , (1.17)

which sends ζm(2n + 1) to f2n+1 and ζm(2n) to ζ(2n)
ζ(2)nf

n
2 . Furthermore, there is an

algorithm for constructing such an isomorphism φm.

The first part of the above theorem is proved in [16], the algorithm for the compu-
tation of φm is described in [17]. It is stressed in loc.cit. that the construction of
φ is not canonical, and depends on the choice of an algebra basis for Zm, which in
turn exists by the main result of [16]. The image of a (motivic) multiple zeta values
under such a map φm is also called its f-alphabet representation [70] (with respect
to the choice of φm). Granting a version of Grothendieck’s period conjecture [2],
Brown’s theorem would imply the Conjecture 1.2.2 [28].

We now change our focus from the Zagier conjecture towards the Broadhurst–
Kreimer conjecture (Conjectures 1.1.3 and 1.1.4). Much work has centered around
the computation of the number gk,n of free algebra generators of Z (i.e. algebraically
independent elements, which generate Z) of weight k and depth n (cf. (1.11)). For
example, we have the following quite general theorem, which generalizes Euler’s re-
sult that every double zeta value of odd weight is a polynomial in single zeta values
(cf. e.g. [37]).

Theorem 1.2.4 (Tsumura). If k 6≡ n mod 2, then

gk,n = 0. (1.18)

This result was previously known as the parity conjecture [11]. Tsumura’s original
proof [75] uses analytic methods; a purely algebraic proof is given in [18].
It therefore remains to compute gk,n in the case where k and n have the same parity
modulo 2. This problem is wide open in general, however, we have the following
results by Zagier for n = 2 [83] and by Goncharov for n = 3 [40].

Theorem 1.2.5. It is

gk,2 ≤
⌊
k − 2

6

⌋
, k even (1.19)

gk,3 ≤
⌊

(k − 3)2 − 1
48

⌋
, k odd. (1.20)
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Chapter 1. Aspects of the theory of multiple zeta values

The right hand sides of the above inequalities can be interpreted as dimensions of
a certain bi-graded vector space, the double shuffle space [18, 48]. More precisely,
the dimension of the degree (k−n, n)-component DShn(k−n) of the double shuffle
space gives an upper bound for Dk,n [48]. Here, DShn(d) is a certain subspace of
the space Vn(d) of homogeneous polynomials of degree d in n variables. The key
to the upper bound result above is that on the one hand, the defining equations
for DSh encode the linearized double shuffle equations between multiple zeta values
[48], and on the other hand, for n ≤ 3 and all d ≥ 0, the numbers dimQDShn(d)
can be computed using representation theory of finite groups [49]. We note that
Goncharov’s original proof is rather different, and establishes a relation between
multiple zeta values and the cohomology of certain modular varieties for GLn [38].
For n ≥ 4, no result analogous to the above theorem seems to be known.
Finally, we note in passing that DSh also carries the structure of a bi-graded Lie al-
gebra under the Ihara bracket [50, 62], and that the Broadhurst–Kreimer conjecture
can be rephrased as a statement about the homology of DSh, which sheds some
more light on the conjecture [18, 33].

1.3 The Drinfeld associator

Instead of the algebra Z of multiple zeta values, it is frequently useful to consider
the generating series of all multiple zeta values as follows. Let Q〈x0, x1〉 denote
the Q-vector space, freely spanned by all words w on the letters x0, x1 (including
the empty word), which carries a natural commutative product, namely the shuffle
product [48]. Following [48], one now defines the map

ζ� : Q〈x0, x1〉 → Z (1.21)

to be the unique Q-algebra homomorphism, which sends x0 and x1 to zero, and
such that ζ�(xkn−1

0 x1 . . . x
k1−1x1) = (−1)nζ(k1, . . . , kn), for kn ≥ 2. The formal

power series
ΦKZ(x0, x1) :=

∑

w∈〈x0,x1〉
ζ�(w) · w, (1.22)

in the non-commuting variables x0, x1 is called the Drinfeld associator [30]. It is
known that the Drinfeld associator arises in various different contexts, for example
in the study of representation of braid groups [30, 53] and also in Grothendieck-
Teichmüller theory [35]. However, Drinfelds original definition didn’t use multiple
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1.3. The Drinfeld associator

zeta values, and the interpretation of ΦKZ as a generating series of multiple zeta val-
ues was only given later in [34, 53]. Instead, Drinfeld defined the Drinfeld associator
as a special monodromy of the Knizhnik-Zamolodchikov equation [52]3

∂

∂z
h(z) =

(
x0

z
+ x1

z − 1

)
· h(z), f : U → C〈〈x0, x1〉〉, (1.23)

where U := C \ {(−∞, 0] ∪ [1,∞)}. More precisely, there exist unique solutions to
(1.23), which satisfy h0(z) ∼ zx0 , as z → 0 and h1(z) ∼ (1−z)x1 , as z → 1, meaning
that the function h0(z)z−x0 resp. h1(z)(1− z)−x1 has an analytic continuation in a
small neighborhood of 0 resp. 1. Then

ΦKZ := h−1
1 h0 ∈ C〈〈x0, x1〉〉. (1.24)

Remark 1.3.1. Consider the differential one-form

ωKZ = dz
z
x0 + dz

z − 1x1. (1.25)

Then (1.23) can be reformulated as the equation

dh(z) = ωKZB · h(z), h : U → C〈〈x0, x1〉〉, (1.26)

where U is as above. Using the general theory of iterated integrals to solve linear
differential equations, explained in Appendix A.2, one can show that

Φop
KZ =

∞∑

n=0

∫ 1

0
ωnKZ, (1.27)

where the iterated integral has to be regularized with respect to the tangential base
points 1 at 0 and −1 at 1 (cf. Appendix A.2.4), and the superscript op denotes the
opposite multiplication on C〈〈x0, x1〉〉. Comparing coefficients with (1.22) gives the
integral representation for multiple zeta values, first described by Kontsevich. For
example, for k1, . . . , kn ≥ 1 with kn ≥ 2, we have

ζ(k1, . . . , kn) = (−1)n
∫ 1

0
ω1ω

k1−1
0 . . . ω1ω

kn−1
0 , (1.28)

where ωi = dz
z−i .

3To be precise, Knizhnik-Zamolodchikov and also Drinfeld use the variables x′0 = x0/(2πi) and
x′1 = x1/(2πi) instead. This introduces some extra powers of 2πi in the denominators, which are
absent here.
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Chapter 1. Aspects of the theory of multiple zeta values

Many properties of the Drinfeld associator have been found and described in [30],
for example there is a connection between ΦKZ and the classical Gamma function
[79]

Γ(s) =
∫ ∞

0
ts−1e−tdt, (1.29)

which can be described as follows. First, one can define ϕKZ := log(ΦKZ) by the usual
formal power series for the logarithm. A priori, ϕKZ is only contained in C〈〈x0, x1〉〉,
however, one can show that ϕKZ is a Lie-series, i.e. ϕKZ ∈ L̂, where L̂ denotes
the graded completion of the free C-Lie algebra on the generators x0, x1. This is a
topological Lie algebra, whose (complete) Lie bracket will also be denoted by [·, ·].
Letting L̂(1) ⊂ L̂ be the commutator, Drinfeld proves that ϕKZ ∈ L̂(1), and goes on
to compute the image of ϕKZ in the double-commutator quotient L̂(1)/[L̂(1), L̂(1)] ∼=
C[[X0, X1]].

Theorem 1.3.2 (Drinfeld). Let ϕ(1)
KZ denote the image of ϕKZ in C[[X0, X1]]. We

have

ϕ(1) = 1
X0X1

[
exp

( ∞∑

n=2

ζ(n)
n

(Xn
0 +Xn

1 − (X0 +X1)n)
)
− 1

]

= 1
X0X1

[
Γ(1−X0)Γ(1−X1)

Γ(1− (X0 +X1)) − 1
]
. (1.30)

Here, one uses the formal Taylor expansion of the logarithm of the Gamma function
[79]

log(Γ(1− z)) = γz +
∞∑

n=2

ζ(n)
n

zn, (1.31)

which converges absolutely for |z| < 1.
Finally, we mention that the Drinfeld associator is only a special case of the more
general notion of an associator, also introduced in [30], and that it was shown in
[36] that a suitable factorization into a product of Gamma functions as in Theorem
1.3.2 holds all associators (in the sense of [30]).
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Chapter 2

Towards elliptic multiple zeta
values

The aim of this chapter is to put together the mathematical background needed for
the study of elliptic multiple zeta values, and to describe the greater mathematical
contexts in which elliptic multiple zeta values take their place. For example, elliptic
multiple zeta values are on the one hand related to (multiple) elliptic polylogarithms,
on which an extensive and further growing literature exists [6, 8, 9, 23, 54, 80, 81],
and on the other hand to the universal elliptic Knizhnik-Zamolodchikov-Bernard
(KZB) connection [24, 43, 45], which furnishes a natural genus one analogue of
the Knizhnik-Zamolodchikov (KZ) connection, which appeared in the context of
multiple zeta values (1.23). For both objects, an important ingredient is a certain
Kronecker series [78, 82], represented by a quotient of Jacobi theta functions.

2.1 A Kronecker series

Fix τ in the upper half-plane H := {ξ ∈ C | Im(ξ) > 0}. We consider a version of
the odd Jacobi theta function θτ , defined for ξ ∈ C by

θτ (ξ) :=
∑

n∈Z
(−1)nq 1

2 (n+ 1
2 )2
z(n+ 1

2 ), q = e2πiτ , z = e2πiξ. (2.1)

Definition 2.1.1. The Kronecker series Fτ : C × C → C (see [78, 82]1) is the
meromorphic function

Fτ (ξ, α) = θ′τ (0)θτ (ξ + α)
θτ (ξ)θτ (α) . (2.2)

1The definition of Fτ given in [82] differs slightly from the one given here. If FZag
τ denotes the

variant introduced in [82], then we have Fτ (ξ, α) = FZag
τ (2πiξ, 2πiα).

23



Chapter 2. Towards elliptic multiple zeta values

The properties of the Kronecker series that we will use are summarized in the fol-
lowing proposition.

Proposition 2.1.2. The Kronecker series Fτ has the following properties.

(i) For any m,n ∈ Z, it has a simple pole at ξ = m + nτ with residue e−2πinα, a
simple pole at α = m + nτ with residue e−2πiξ and a simple zero at ξ + α =
m+ nτ . Moreover it has no other poles nor zeros.

(ii) It satisfies Fτ (ξ, α) = Fτ (α, ξ) = −Fτ (−ξ,−α).

(iii) It is quasi-periodic in both ξ and α:

Fτ (ξ + 1, α) = Fτ (ξ, α), Fτ (ξ + τ, w) = e−2πi Im(ξ)
Im(τ)αFτ (ξ, α), (2.3)

Fτ (ξ, α + 1) = Fτ (ξ, α), Fτ (ξ, α + τ) = e−2πi Im(α)
Im(τ) ξFτ (ξ, α). (2.4)

(iv) Under the natural action of the full modular group SL2(Z) on C × C × H, it
transforms as

Faτ+b
cτ+d

((cτ + d)−1ξ, (cτ + d)−1α) = (cτ + d)e2πic ξα
cτ+dFτ (ξ, α), (2.5)

for

a b

c d


 ∈ SL2(Z). For short,

(Fτ (ξ, α))|γ = (cτ + d)e2πic ξα
cτ+dFτ (ξ, α) (2.6)

for γ ∈ SL2(Z).

(v) We have

Fτ (ξ, α) = −2πi

 z

1− z + 1
1− w +

∑

m,n>0
(zmwn − z−mw−n)qmn


 (2.7)

= πi[coth(πiξ) + coth(πiα)]− 4πi
∞∑

n=1

∑

d|n
sinh

[
2πi

(
n

d
ξ + dα

)]
qn,

where z = e2πiξ, w = e2πiα and q = e2πiτ .

(vi) It satisfies the Fay identity:

Fτ (ξ1, α1)Fτ (ξ2, α2) = Fτ (ξ1, α1 + α2)Fτ (ξ2 − ξ1, α2)

+ Fτ (ξ2, α1 + α2)Fτ (ξ1 − ξ2, α1). (2.8)
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2.1. A Kronecker series

Moreover, Fτ is the unique meromorphic function satisfying (i)-(iii).

Proof: Properties (i)-(iv), the second equality in (v), as well as uniqueness are
proved in [82], Theorem 3. For the first equality of (v) and the Fay identity, see [23],
Proposition 5.

By property (i) of the last proposition, we can expand Fτ as a Laurent series at
α = 0

Fτ (ξ, α) =
∑

k≥0
f (k)(ξ, τ)αk−1. (2.9)

The properties listed in Proposition 2.1.2 have straightforward analogues for the
functions f (k)(ξ), which are given in the next proposition. In the following, we
will omit the τ -dependence from the notation, and simply write f (k)(ξ) instead of
f (k)(ξ, τ).

Proposition 2.1.3. The functions f (k)(ξ) have the following properties.

(i) They are meromorphic functions with poles only at ξ = m+nτ . Moreover, for
k 6= 1, the functions f (k)(ξ) have no poles for ξ ∈ Z.

(ii) They have even (resp. odd) parity when k is even (resp. odd):

f (k)(−ξ) = (−1)kf (k)(ξ). (2.10)

(iii) They are quasi-periodic in ξ:

f (k)(ξ + 1) = f (k)(ξ), f (k)(ξ + τ) =
k∑

n=0
f (n)(ξ)

(
−2πi Im(ξ)

Im(τ)

)k−n
. (2.11)

(iv) Under the natural action of the full modular group SL2(Z) on C × H, they
transform as

(cτ + d)−kf (k)(ξ)|γ =
k∑

n=0
f (n)(ξ)

(
2πic ξ

cτ + d

)k−n
, (2.12)

for γ =

a b

c d


 ∈ SL2(Z), and the action of γ on the left hand side is the

same as in Proposition 2.1.2.
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Chapter 2. Towards elliptic multiple zeta values

(v) They have Fourier expansions in q = e2πiτ :

f (0)(ξ) = 1, f (1)(ξ) = πi coth(πiξ)− 4πi
∞∑

m=1
sinh(2πimξ)

∞∑

n=1
qmn (2.13)

and for k ≥ 2:

f (k)(ξ) =





−2ζ(k)− 2 (2πi)k
(k − 1)!

∞∑

m=1
cosh(2πimξ)

∞∑

n=1
nk−1qmn if k is even

2 (2πi)k
(k − 1)!

∞∑

m=1
sinh(2πimz)

∞∑

n=1
nk−1qmn if k is odd.

(2.14)

(vi) They satisfy the Fay identity:

f (m)(ξ1)f (n)(ξ2) = −(−1)nf (m+n)(ξ1 − ξ2)

+
n∑

r=0

(
m+ r − 1
m− 1

)
f (n−r)(ξ2 − ξ1)f (m+r)(ξ1)

+
m∑

r=0

(
n+ r − 1
n− 1

)
f (m−r)(ξ1 − ξ2)f (n+r)(ξ2). (2.15)

Proof: All properties follow straightforwardly from the corresponding properties in
Proposition 2.1.2. For (v), we used in addition the well-known expansions

πi coth(πiξ) = 1
ξ
− 2

∑

n≥1
ζ(2n)ξ2n−1, (2.16)

as well as

sinh(2πi(mξ + nα)) =
∑

r,s≥0, r+s odd
(2πi)r+s (mξ)r

r!
(nα)s
s! . (2.17)

2.2 Iterated integrals on an elliptic curve

In this section, we describe a family of iterated integrals on a once-punctured com-
plex elliptic curve, introduced in [23].
First, recall the general definition of an iterated integral: given smooth differential
one-forms ω1, . . . , ωn on a smooth k-manifold M (k = R or k = C) and a piecewise
smooth path γ : [0, 1]→M , one defines the iterated integral

∫

γ
ω1 . . . ωn :=

∫
· · ·

∫

0≤t1≤...≤tn≤1

f1(t1) . . . fn(tn)dt1 . . . dtn, (2.18)
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2.2. Iterated integrals on an elliptic curve

where fi(ti)dti := γ∗(ωi). Every k-linear combination of such integrals will also be
called an iterated integral, and by convention, the empty iterated integral

∫
γ is iden-

tically equal to one. We will denote by H0(B(M)) the k-vector space of all homotopy
invariant iterated integrals on M . By definition, these are iterated integrals, whose
value along a path is invariant under homotopies of the path (cf. Definition A.2.4).
For more on iterated integrals, see Appendix A.2 and the references given therein.

2.2.1 Differential forms on a once-punctured elliptic curve

Fix again τ ∈ H, and consider the once-punctured complex elliptic curve

E×τ := C/(Z + Zτ) \ {0}. (2.19)

In [23], an explicit description of H0(B(E×τ )) is given in terms of the Kronecker
series (2.2). Before stating the result, we need a bit more notation. Let ξ = s+ rτ ,
with s, r ∈ R be the canonical coordinate on E×τ , and ν = 2πidr. Recall from
Proposition 2.1.2 that the Kronecker series Fτ (ξ, α) is meromorphic with simple
poles at ξ = 0 and α = 0, and that it transforms quasi-periodically with respect to
lattice transformations ξ 7→ ξ +m+ nτ . Therefore, the differential one-form

Ωτ (ξ, α) := e2πirαFτ (ξ, α)dξ (2.20)

is invariant under transformations ξ 7→ ξ+m+nτ and real analytic on C\ (Z+Zτ).
Using the Laurent expansion of Fτ (ξ, α), which is available from (2.9), we obtain a
formal expansion

Ωτ (ξ, α) =
∑

k≥0
ω(k)αk−1, (2.21)

where every ω(k) is a real analytic differential one-form on E×τ . Thus αΩτ (ξ, α) is a
Q[[α]]-valued differential one-form on E×τ .
Moreover the Fay identity for the Kronecker series (Proposition 2.1.2 vi)) implies
the quadratic relation

Ω(ξ1, α1)∧Ω(ξ2, α2) = Ωτ (ξ1, α1+α2)∧Ωτ (ξ2−ξ1, α2)+Ωτ (ξ2, α1+α2)∧Ωτ (ξ1−ξ2, α1).
(2.22)

and it is immediate from the product rule that

dΩτ (ξ, α) = να ∧ Ωτ (ξ, α). (2.23)

By [23] (3.4), ω(0) = dξ and the higher ω(k) satisfy

dω(k+1) = ν ∧ ω(k), ∀k ≥ 0. (2.24)
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Chapter 2. Towards elliptic multiple zeta values

2.2.2 The elliptic KZB form

In this section, we introduce the elliptic Knizhnik-Zamolodchikov-Bernard form, or
elliptic KZB form for short, in the way described in [23]. We let L̂ be the graded
completion of the free C-Lie algebra on two generators x0, x1 (cf. Section A.1).

Definition 2.2.1. The elliptic KZB form ωKZB is the formal L̂-valued differential
one-form on E×τ , defined by

ωKZB := −νx0 + ad(x0)Ωτ (ξ, ad(x0))(x1) = −νx0 +
∑

k≥0
ω(k) adk(x0)(x1). (2.25)

Remark 2.2.2. Strictly speaking, the differential form ωKZB above is a real analytic
trivialization, introduced by Brown and Levin in [23], of the original universal elliptic
KZB form [24, 55]. The advantage of Brown-Levin’s definition is that ωKZB is defined
as an honest differential form on the once-punctured elliptic curve E×τ , at the expense
of losing meromorphicity, while the original KZB form [24, 55] is meromorphic, but
only quasi-periodic, and hence does not descend to the once-punctured elliptic curve.

Proposition 2.2.3. The L̂-valued differential form ωKZB has the following proper-
ties.

(i) It is integrable, i.e.
dωKZB + ωKZB ∧ ωKZB = 0. (2.26)

(ii) Under the natural action of SL2(Z) on C×H, it transforms as

(ωKZB)|γ = −ν|γx0 +
∑

k≥0
ω

(k)
|γ adk(x0)(x1)

= −2πi(cτ + d)dr · x0 +
∑

k≥0
ω(k)(cτ + d)k+1 adk(x0)(x1). (2.27)

In particular, the differential one-form ω(k) is modular of weight k + 1.

(iii) As τ → i∞, ωKZB degenerates to the KZ form (1.25) in the Lie variables
ad(x0)

e2πi ad(x0)−1(x1) and ad(x0)(x1):

lim
τ→i∞

ωKZB = dz
z

ad(x0)
e2πi ad(x0) − 1(x1) + dz

z − 1 ad(x0)(x1), z = e2πiξ. (2.28)

(iv) The image of ωKZB in the abelianization L̂/[L̂, L̂] is given by

ωab
KZB = −2πidr · x0 + dξ · x1. (2.29)
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2.2. Iterated integrals on an elliptic curve

Proof: Properties ii) and iii) follow directly from the analogous properties of the
Kronecker series (Proposition 2.1.2 iv),v)), while property iv) is immediate from the
expansion

ωKZB = −νx0 +
∑

k≥0
ω(k) adk(x0)(x1) ≡ −2πidr · x0 + dξ · x1 mod [L̂, L̂]. (2.30)

Finally, property i) follows from a direct calculation, using (2.23):

dωKZB = d ad(x0)Ωτ (ξ, ad(x0))(x1)

= ν ad(x0) ∧ ad(x0)Ωτ (ξ, ad(x0))(x1)

= νx0 ∧ ad(x0)Ωτ (ξ, ad(x0))(x1) + ad(x0)Ωτ (ξ, ad(x0))(x1) ∧ νx0 (2.31)

= −ωKZB ∧ ωKZB.

2.2.3 The theorem of Brown and Levin

Consider now the formal generating series

T ell = 1 +
∑

k≥1

∫
ωkKZB ∈ Hom(PE×τ ,C)⊗̂〈〈x0, x1〉〉, (2.32)

where Hom(PE×τ ,C) denotes the set of C-valued functions on the path space of E×τ
[25]. The series T ell is obtained from iteratively integrating the universal elliptic KZB
form, and expanding the result into monomials in x0, x1. As shown for example in
[46], Section 3, it follows from the integrability condition (Proposition 2.2.3 i)) that
every coefficient in T ell of a word 〈x0, x1〉 is a homotopy invariant iterated integral
on E×τ . In [23], it is proved that the converse is true as well, more precisely.

Theorem 2.2.4 (Brown-Levin). Every homotopy invariant iterated integral on E×τ
can be written as a unique C-linear combination of the coefficients of T ell.

The series T ell is thus the generating series of a C-basis of H0(B(E×τ )). Since every
coefficient of T ell is a homotopy invariant iterated integral, for any base points
ξ, ρ ∈ E×τ we have a map

T ell : π1(E×τ ; ξ, ρ)→ C〈〈x0, x1〉〉. (2.33)

Remark 2.2.5. Other choices of bases for H0(B(E×τ )) are of course possible, and
there seems to be no completely natural choice of basis. On the other hand, Propo-
sition 2.2.3 shows that the universal elliptic KZB form has some good properties,
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Chapter 2. Towards elliptic multiple zeta values

and in particular degenerates to the KZ form in the limit τ → i∞ (with x0 and x1 in
the original definition of the KZ form replaced by the new variables ad(x0)

e2πi ad(x0)−1(x1)
and ad(x0)(x1) respectively). Moreover, another good property of (a slight variant
of) the elliptic KZB form is that it is defined over Q (cf. [55], §5). We refer to the
introduction of [23] for a related discussion.

2.2.4 Relation to multiple elliptic polylogarithms

The theorem of Brown and Levin given in the last subsection plays an important
role in the theory of multiple elliptic polylogarithms. We first repeat the definition
found in [23].

Definition 2.2.6 (Brown-Levin). For a multi-index (k1, . . . , kn) ∈ Zn≥1, define the
(unregularized) multiple elliptic polylogarithm by

Ek1,...,kn(ξ1, . . . , ξn;α1, . . . , αn) =
∑

m1,...,mn∈Z
um1

1 . . . umnn Ik1,...,kn(qm1t1, . . . , q
mntn),

(2.34)
where ui = e2πiαi for 1 ≤ i ≤ n. Here

Ik1,...,kn(t1, . . . , tn) = Lik1,...,kn

(
t1
t2
, . . . ,

tn−1

tn
, tn

)
(2.35)

denotes the classical (multi-variable) multiple polylogarithm (cf. [39])

In order to put this definition into context, it is useful to recall some of the history
of (multiple) elliptic polylogarithms. The main idea that elliptic polylogarithms
should be weighted averages of the usual polylogarithms dates back at least to work
of Bloch [9] on the Bloch-Wigner elliptic dilogarithm

D(q;x) =
∑

n∈Z
D(qnx), D(x) = arg(1− x) log |x|+ =(Li2(x)), (2.36)

where Li2(x) :=
∫ x
0 log(1− t)dt

t
is the classical dilogarithm (cf. [85] for an introduc-

tion).
The definition (2.36) first appeared in [9] in the context of K-theory for elliptic
curves. In later works, Ramakrishnan [64] and Zagier [81] extended the definition of
Bloch’s to define single-valued elliptic polylogarithmsDa,b(q;x), which generalize the
Bloch-Wigner elliptic dilogarithm. It was shown later by Beilinson and Levin [8] that
the Bloch-Wigner-Ramakrishnan-Zagier elliptic polylogarithms can be constructed
as periods of certain extensions of mixed motives, see also [54] for a purely analytic
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description. The work of Beilinson and Levin was later generalized by Wildeshaus
[80], from once-punctured elliptic curves to arbitrary (relative) Shimura varieties
in the general context of mixed motivic sheaves. This point of view on elliptic
polylogarithms has lead to important advances in arithmetic geometry, for example
towards proving the Tamagawa number conjecture [47, 51]. See also [5, 6] for recent
further work on other aspects of elliptic polylogarithms.
The elliptic polylogarithms described up to now can be seen as elliptic analogues
of the classical polylogarithms. On the other hand, elliptic generalizations of the
multiple polylogarithms Lik1,...,kn(z1, . . . , zn) seem to be not as frequently studied.
In fact, they have first been proposed explicitly by Levin and Racinet [55] and their
study was taken up later by Brown and Levin [23].
An important result of the paper [23] is the clarification of the connection between
multiple elliptic polylogarithms, homotopy invariant iterated integrals on (the con-
figuration space of) a once-punctured elliptic curve and the elliptic KZB form. In
particular, one has the following

Theorem 2.2.7 ([23], Theorem 72 & Corollary 73.). The coefficients of T ell are
contained in the Q-vector space spanned by the multiple elliptic polylogarithms.

For a precise statement, see Theorem 72 and Corollary 73 of [23].

2.3 The elliptic KZB-associator

In this section, we introduce the elliptic KZB associator of Enriquez and state some
of its properties [31]. We also show how the elliptic KZB associator can be expressed
in terms of homotopy invariant iterated integrals on E×τ .
Let α : [0, 1] → Eτ be the straight line path s 7→ s, and likewise let β : [0, 1] → Eτ

be the straight line path s 7→ s · τ . Since the coordinate r vanishes along α, the pull
back of ωKZB (2.25) along α is given by

α∗ωKZB = ad(x0)Fτ (s, ad(x0))(x1)ds, (2.37)

where s denotes the natural coordinate on [0, 1]. On the other hand, a simple
calculation using the definition of ωKZB shows that the pull back along β∗ is given
by

β∗ωKZB = −2πix0ds+ τ ad(x0)e2πis·ad(x0)Fτ (s · τ, ad(x0))(x1)ds. (2.38)
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Chapter 2. Towards elliptic multiple zeta values

Recall that L̂ denotes the free Lie algebra on the set {x0, x1}, completed for the
degree (where x0 and x1 both have degree one).

Proposition 2.3.1. There exists a unique solution G : (0, 1) → exp(L̂) to the
differential equation

dG(s) =

− ad(x0)Fτ (s, ad(x0))(x1)


G(s)ds, (2.39)

such that G(s) ∼ (−2πis)−[x0,x1] as s → 0, where the branch of the logarithm is
chosen such that log(±πi/2) = ±i. Likewise, there exists a unique solution H :
(0, 1)→ exp(L̂) to the differential equation

dH(s) =

2πix0ds− τ ad(x0)e2πis·ad(x0)Fτ (s · τ, ad(x0))(x1)


H(s)ds, (2.40)

such that H(s) ∼ (−2πis)−[x0,x1] as s→ 0.

Proof: It follows from Proposition A.2.2.(vi) that for all 0 < ε << 1, the function

Gε(s) = exp
[ ∫ ε

s
ad(x0)Fτ (s, ad(x0))(x1)

]
(−2πiε)−[x0,x1] (2.41)

solves (2.39). Moreover, by Proposition A.2.6, the limit

G(s) := lim
ε→0

Gε(s) (2.42)

exists, and as a limit of solutions to (2.39), is also a solution to (2.39) on all of (0, 1).
To see that it has the correct asymptotic behavior, note that

G(s) ∼ lim
ε→0

e− log(s)[x0,x1]+log(ε)[x0,x1]e− log(−2πiε)[x0,x1] = e− log(−2πis)[x0,x1] (2.43)

as s→ 0. A similar argument shows that the function

H(s) := lim
ε→0

exp
[ ∫ ε

s

(
−2πix0 + τ ad(x0)e2πis·ad(x0)Fτ (s · τ, ad(x0))(x1)

)
ds
]

× (−2πiε)−[x0,x1] (2.44)

solves (2.40), and satisfies H(s) ∼ (−2πis)−[x0,x1] as s→ 0.

Remark 2.3.2. The asymptotic condition that G(s) ∼ (−2πis)−[x0,x1], H(s) ∼
(−2πis)−[x0,x1] as s → 0 can be seen as an analogue of an initial condition for an
ordinary differential equation in the presence of regular singularities. Expanding
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(−2πis)−[x0,x1] as a formal exponential introduces log(−2πi)-terms in the formulas
above. If one passes from Eτ = C/(Z + Zτ) to the Tate curve C×/qZ via the
exponential map ξ 7→ e2πiξ and transports the differential equation in Proposition
2.3.1 to the Tate curve, then one would get rid of the log(−2πi)-terms.

We extend G(s) to (0, 2) \ {1} by analytic continuation around the point 1 ∈ C in
the negative direction, i.e. along a path whose image is contained in {a+bτ | b ≥ 0}.
Likewise, we extend H(s) to (0, 2) \ {1} along a path whose image is contained in
{a+bτ | a ≥ 0}. Since both {a+bτ | a ≥ 0} and {a+bτ | b ≥ 0} are simply connected
the analytic continuation does not depend on the choice of path.

Definition 2.3.3. The elliptic KZB-associator is the triple (ΦKZ, A(τ), B(τ)), where
ΦKZ is the Drinfeld associator and A(τ), B(τ) ∈ C〈〈x0, x1〉〉 are formal series defined
by

A(τ) = G(s)−1G(1 + s), B(τ) = H(s)−1H(1 + s). (2.45)

The above definition is the original definition of the elliptic KZB associator, as
given in [31], Section 6. For our purposes, however, it will be useful to modify the
definition of A(τ) and B(τ) slightly by setting

A(τ) := e−πi ad(x0)(x1)A(τ), B(τ) := eπi ad(x0)(x1)B(τ). (2.46)

Remark 2.3.4. We have given the definition of the elliptic KZB associator using ex-
plicit iterated integrals, essentially following [31]. A more conceptual way of defining
it, which also clarifies the difference between A(τ), B(τ) and its underscored variants
A(τ), B(τ) can be given as follows. Consider the tangent vector −→v 0 := (−2πi)−1 ∂

∂ξ

at 0 ∈ Eτ (which equals the tangent vector − ∂
∂z

at 1 on the Tate curve C×/qZ,
where q = e2πiτ , z = e2πiξ). As in (2.33), we have a morphism

T ell−→v : π1(E×τ ;−→v )→ C〈〈x0, x1〉〉, (2.47)

obtained by integrating the elliptic KZB form ωKZB, where π1(E×τ ;−→v ) is the fun-
damental group of E×τ with respect to the “tangential base point” −→v at zero ([26],
§15). This is a free group on two generators α, β, which correspond to the two
natural homology cycles on an elliptic curve. We then have the identities

T ell−→v (α) = A(τ), T ell−→v (β) = B(τ). (2.48)

On the other hand, if instead of the fundamental group π1(E×τ ;−→v ) one considers
the fundamental torsor of paths π1(E×τ ;−→v ,−−→v ) from −→v to −−→v , then

T ell−→v ,−−→v (α) = A(τ), T ell−→v ,−−→v (β) = B(τ). (2.49)
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Chapter 2. Towards elliptic multiple zeta values

This definition of the elliptic KZB associator is in some sense analogous to the
definition of the Drinfeld (KZ) associator ΦKZ as the image of the natural straight
line path [0, 1] under the map π1(P1 \ {0, 1,∞};−→1 0,−

−→1 1) → C〈〈x0, x1〉〉 obtained
by integrating the KZ form ωKZ (cf. Example A.2.7, or [29], §5.16).

Proposition 2.3.5. The series A(τ) and B(τ) satisfy the following properties.

(i) We have the explicit formulae

A(τ) = lim
ε→0

(−2πiε)ad(x0)(x1)

× exp
[ ∫ 1−ε

ε
− ad(x0)Fτ (s, ad(x0))(x1)ds

]
(−2πiε)− ad(x0)(x1), (2.50)

B(τ) = lim
ε→0

(−2πiε)ad(x0)(x1)

× exp
[ ∫ (1−ε)

ε

(
2πix0 − τ ad(x0)e2πis ad(x0)Fτ (sτ, ad(x0))(x1)

)
ds
]

× (−2πiε)− ad(x0)(x1). (2.51)

(ii) They are exponentials of Lie series A(τ),B(τ) : H→ L̂, i.e.

A(τ) = exp(A(τ)), B(τ) = exp(B(τ)). (2.52)

These Lie series satisfy

A(τ) ≡ −x1 mod [L̂, L̂] (2.53)

B(τ) ≡ 2πix0 − τx1 mod [L̂, L̂]. (2.54)

Proof: (i) follows directly from the formulas for G(t) and H(t) given in Proposition
2.3.1, using the composition of paths formula for iterated integrals (Proposition
A.2.2.(i)). For (ii), first note that since G(t) and H(t) (thus also G(1 + s) and
H(1 + s)) are solutions to initial value problems, they are group-like by Proposition
A.2.3, hence so are A(τ) and B(τ) as products of group-like series (where we also
note that e±πi ad(x0)(x1) is also group-like). But a group-like series is the exponential
of a Lie series (cf. Proposition A.1.9).
Finally, by Proposition 2.2.3, the image of ωKZB in the abelianization L̂/p, where p

denotes the commutator of L̂ is given by

ωab
KZB = −2πidr · x0 + dξ · x1. (2.55)
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2.3. The elliptic KZB-associator

Hence

A(τ) = log(A(τ)) = log(e−πi ad(x0)(x1) ·G−1(t)G(1 + t)) ≡ −
∫ 0

t
x1ds+

∫ 0

1+t
x1ds

= −x1 mod p, (2.56)

and likewise

B(τ) = log(B(τ)) = log(eπi ad(x0)(x1) ·H−1(t)H(1 + t))

≡ −
∫ 0

t
−2πix0 + τx1ds+

∫ 0

1+t
−2πix0 + τx1ds (2.57)

= 2πix0 − τx1 mod p.

We end this section by mentioning that A(τ) and B(τ) also satisfy a certain dif-
ferential equation on the upper half-plane, which relates them to iterated integrals
of Eisenstein series [20, 57] and also to a Lie algebra of special derivations on the
fundamental Lie algebra of a once-punctured elliptic curve [60, 61, 75]. We postpone
its discussion to Chapter 5, where it is put into its natural context.
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Chapter 3

Elliptic multiple zeta values

In this chapter, we begin our study of the coefficients of Enriquez’ elliptic KZB
associator, which are called elliptic multiple zeta values. This name is justified
by the fact that the elliptic KZB associator is an elliptic analogue of the Drinfeld
associator (cf. Section 1.3), whose coefficients are precisely the multiple zeta values.
Elliptic multiple zeta values come in two types, namely A-elliptic and B-elliptic
multiple zeta values, corresponding to the two “elliptic” parts A(τ) and B(τ) of the
elliptic KZB associator (cf. Definition 2.3.3). In this chapter, we first define A-
elliptic multiple zeta values, study their properties, and give many examples. Then,
we introduce our version of B-elliptic multiple zeta values, and study its relation
to the variant of B-elliptic multiple zeta values defined by Enriquez. The difference
between the two versions is mainly that our version of the B-elliptic multiple zeta
values is given by homotopy invariant iterated integrals, while Enriquez’s version is
not.

3.1 Definition and first properties of A-elliptic multiple zeta values

The A-elliptic multiple zeta values to be introduced in this section have first been
defined by Enriquez [32].
Recall the definition of the formal differential one-form

Ωτ (ξ, α) = e2πirαFτ (ξ, α), ξ = s+ rτ, r, s ∈ R, (3.1)

where Fτ denotes the Kronecker series (cf. (2.20)).

Proposition 3.1.1. For all λ, µ ∈ C×, the limit

lim
t→0

(λt)ad(x0)(x1) exp
[ ∫ 1−t

t
ad(x0)Ωτ (ξ, ad(x0))(x1)

]
(µt)− ad(x0)(x1) (3.2)
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Chapter 3. Elliptic multiple zeta values

exists.

Proof: If ξ is real, then r(ξ) = 0. Therefore

ad(x0)Ωτ (ξ, ad(x0))(x1) = Fτ (ξ, ad(x0))(x1)dξ. (3.3)

From Proposition 2.1.2, Fτ (ξ, α) has a simple pole at ξ = 0 with residue 1. Thus,
the existence of the limit follows from Proposition A.2.6

Definition 3.1.2. For integers k1, . . . , kn ≥ 0, define the A-elliptic multiple zeta
value IA(k1, . . . , kn; τ) to be the coefficient of adk1(x0)(x1) . . . adkn(x0)(x1) in

lim
t→0

(−2πit)ad(x0)(x1) exp
[ ∫ 1−t

t
ad(x0)Ωτ (ξ, ad(x0))(x1)

]
(−2πit)− ad(x0)(x1), (3.4)

which is contained in C〈〈x0, x1〉〉. The weight of IA(k1, . . . , kn) is the sum k1+. . .+kn,
and its length is n.

Remark 3.1.3. If k1, kn 6= 1, then ω(k1) and ω(kn) have no poles at 0 and at 1, and
IA(k1, . . . , kn) is equal to the bona fide convergent iterated integral

IA(k1, . . . , kn; τ) =
∫ 1

0
ω(k1) . . . ω(kn) =

∫ 1

0
f (k1)(ξ1)dξ1 . . . f

(kn)(ξn)dξn, (3.5)

where the functions f (k) have been introduced in Section 2.1.

An important property of A-elliptic multiple zeta values is their Fourier expansion.

Proposition 3.1.4. Every A-elliptic multiple zeta value has a Fourier expansion
∞∑

n=0
anq

n, q = e2πiτ . (3.6)

Proof: By Proposition 2.1.3, the functions f (k)(ξ) (which implicitly depend on τ)
have Fourier expansions in q = e2πiτ . Using the equality (3.5), this Fourier expansion
passes to the A-elliptic multiple zeta values by integration.

The Fourier coefficients of A-elliptic multiple zeta values turn out to be Q[(2πi)−1]-
linear combinations of multiple zeta values, which can be computed explicitly, see
Section 3.3.

Definition 3.1.5. Define the Q-vector space of A-elliptic multiple zeta values to be

EZA = 〈IA(k1, . . . , kn; τ) | k1, . . . , kn ≥ 0〉Q. (3.7)
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In analogy to the case of multiple zeta values, we define for k, n ≥ 0 the Q-vector
subspace

Ln(EZA
k ) = 〈IA(k1, . . . , kr; τ) | k1 + . . .+ kn = k, r ≤ n〉Q ⊂ EZA. (3.8)

We will sometimes also use the notation Ln(EZA) := ∑
k≥0 Ln(EZA

k ) for the space
of all A-elliptic multiple zeta values of length at most n.

Proposition 3.1.6. For all k, k′, n, n′ ≥ 0, we have

Ln(EZA
k )Ln′(EZA

k′) ⊂ Ln+n′(EZA
k+k′), (3.9)

i.e. EZA is a bi-filtered Q-subalgebra of O(H), the C-algebra of holomorphic func-
tions on H. More precisely, we have

IA(k1, . . . , kr; τ)IA(kr+1, . . . , kr+s; τ) =
∑

σ∈Σ(r,s)
IA(kσ(1), . . . , kσ(r+s); τ) (3.10)

where Σ(r, s) denotes the set of (r, s)-shuffles, i.e. the set of permutations σ of
{1, . . . , r+s}, such that σ−1 is strictly increasing on {1, . . . , r} and on {r+1, . . . , r+
s}.

Proof: As a quotient of Jacobi theta functions, which are holomorphic functions of
τ , the Kronecker series Fτ (ξ, α) is holomorphic in the variable τ as well. This implies
that A-elliptic multiple zeta values are also holomorphic in τ , being integrals of holo-
morphic functions. Equation (3.10) follows from the definition of IA(k1, . . . , kn; τ)
and the fact that (3.4) is group-like, and hence its coefficients satisfy the shuffle
product formula (by Proposition A.1.7).

Proposition 3.1.7. For all k1, . . . , kn ≥ 0, we have the reflection relation

IA(k1, . . . , kn; τ) = (−1)k1+...+knIA(kn, . . . , k1; τ) (3.11)

Proof: By the inversion of paths formula for iterated integrals (cf. Proposition
A.2.2.(ii)), we have for every 0 < t << 1

∫ 1−t

t
ω(kn) . . . ω(k1) = (−1)n

∫ t

1−t
ω(k1) . . . ω(kn). (3.12)

It follows from the symmetry properties of the Kronecker series (Proposition 2.1.2)
that under the substitution ξ 7→ 1− ξ, we have

ω
(ki)
ξ 7→1−ξ = (−1)ki+1ωki , (3.13)
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hence
(−1)n

∫ t

1−t
ω(k1) . . . ω(kn) = (−1)k1+...+kn

∫ 1−t

t
ω(k1) . . . ω(kn). (3.14)

Now IA(kn, . . . , k1; τ) is the coefficient of adkn(x0)(x1) . . . adk1(x0)(x1) in

lim
t→0

(−2πit)ad(x0)(x1) exp
[ ∫ 1−t

t
ad(x0)Ωτ (ξ, ad(x0))(x1)

]
(−2πit)− ad(x0)(x1). (3.15)

and by (3.4), (−1)k1+...+knIA(k1, . . . , kn; τ) is the coefficient of
[
lim
t→0

(−2πit)ad(x0)(x1) exp
[ ∫ 1−t

t
ad(x0)Ωτ (ξ, ad(x0))(x1)

]
(−2πit)− ad(x0)(x1)

]op
,

(3.16)
where a supscript op denotes the opposite multiplication on C〈〈x0, x1〉〉, defined by
(F ·G)op := G · F . Comparing coefficients yields the result.

3.1.1 Explicit examples in lengths one and two

Using the Fourier expansion of the Kronecker series, one can give explicit formulas
of elliptic multiple zeta values of length one, and relate them to even single zeta
values.

Proposition 3.1.8. We have

IA(k; τ) =




−2ζ(k) if k is even,

0 if k is odd.
(3.17)

In particular, IA(0; τ) = −2ζ(0) = −2
(
−1

2

)
= 1.

Proof: For even k, we have from Proposition 2.1.3.(v)

IA(k; τ) =
∫ 1

0
ω(k) =

∫ 1

0
f (k)(ξ)dξ

=
∫ 1

0

(
−2ζ(k)− 2 (2πi)k

(k − 1)!

∞∑

m=1
cosh(2πimξ)

∞∑

n=1
nk−1qmn

)
dξ

= −2ζ(k), (3.18)

while for odd k with k 6= 1

IA(k; τ) =
∫ 1

0
ω(k) =

∫ 1

0
f (k)(ξ)dξ

=
∫ 1

0

(
−2 (2πi)k

(k − 1)!

∞∑

m=1
sinh(2πimξ)

∞∑

n=1
nk−1qmn

)
dξ (3.19)

40



3.1. Definition and first properties of A-elliptic multiple zeta values

= 0.

For k = 1, use the Fourier expansion of f (1) together with (3.4) to obtain

IA(1; τ) = lim
t→0

log(−2πit)− log(−2πit) +
∫ 1−t

t
f (1)(ξ)dξ

= lim
t→0

∫ 1−t

t
πi coth(πiξ)− 4πi

∞∑

m=1
sinh(2πimξ)

∞∑

n=1
qmndξ (3.20)

= 0.

The preceding proposition already implies our first theorem concerning the algebraic
structure of elliptic multiple zeta values.

Theorem 3.1.9. We have

L1(EZA
k ) =




Q · πk if k is even

{0} else.
(3.21)

In particular,

Dell
k,1 =





1 if k ≥ 2 is even

0 else.
(3.22)

In principle, the Fourier expansion method can be used in higher lengths as well,
however, the resulting formulas become quite long and cumbersome. Later on, a
different representation of A-elliptic multiple zeta values in terms of iterated integrals
of Eisenstein series will be introduced.
For the case of length two elliptic multiple zeta values, we have the following partial
result. See Propositions 4.1.2 and 4.1.1 for more precise results.

Proposition 3.1.10. Let r, s ≥ 0 with r + s even. Then

IA(r, s; τ) = 1
2I

A(r; τ)IA(s; τ). (3.23)

In particular, if r + s is even:

IA(r, s; τ) =





2ζ(r)ζ(s) if r, s are both even

0 if r, s are both odd.
(3.24)

Proof: From the shuffle product formula and the reflection relation, we get

IA(r; τ)IA(s; τ) = IA(r, s; τ) + IA(s, r; τ) = IA(r, s; τ)(1 + (−1)r+s) = 2IA(r, s; τ).
(3.25)

Combining this with the explicit formula for IA(k; τ) (Proposition 3.1.8), we get the
result.
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Chapter 3. Elliptic multiple zeta values

3.2 Comparison with the elliptic KZB-associator

In this section, we will relate A-elliptic multiple zeta values to coefficients of the
elliptic KZB associator. The first step is undertaken in the following

Proposition 3.2.1. We have

A(τ) =
∑

n≥0
(−1)n

∑

k1,...,kn

IA(k1, . . . , kn; τ) adkn(x0)(x1) . . . adk1(x0)(x1). (3.26)

Proof: By Proposition 2.3.5 i), we know that

A(τ) =

eπi ad(x0)(x1)

× lim
ε→0

(−2πiε)ad(x0)(x1) exp
[ ∫ 1−ε

ε
− ad(x0)Fτ (t, ad(x0))(x1)

]

× (−2πiε)− ad(x0)(x1)



op

. (3.27)

Thus, the proposition follows from the definition of A-elliptic multiple zeta values
(3.4).

Next, we show that the algebra spanned by the coefficients of A(τ) equals the algebra
of A-elliptic multiple zeta values, in a way compatible with the length and the weight.
This is the analogue for A-elliptic multiple zeta values of the fact that the multiple
zeta values are precisely the coefficients of the Drinfeld associator.

Theorem 3.2.2. For all k, n ≥ 0, we have equalities of vector spaces

Ln(EZA
k ) = 〈A(τ)w |w of length n and weight k〉Q. (3.28)

Proof: By Proposition 3.2.1, we have

A(τ) =
∑

k1,...,kn≥0
(−1)nIA(k1, . . . , kn; τ) adkn(x0)(x1) . . . adk1(x0)(x1). (3.29)

If we expand all adkn(x0)(x1) . . . adk1(x0)(x1) on the right hand side into word in
x0, x1, then we see that for a word w of weight k and length n, every A(τ)w is a
linear combination of IA’s of the same weight and length. Thus, the inclusion “⊃”
of the Proposition follows.
For the reverse inclusion, we show by induction on the set of multi-indices of length
n that IA(k1, . . . , kn; τ) ∈ (EZA)nk . If w = xn1 (induction start), then A(τ)w =
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(−1)nIA(0; τ). For the induction step, let k = (k1, . . . , kn) be a multi-index of
length n, and assume the statement for all multi-indices k′ < k in the lexicographic
ordering (induction hypothesis). Set w = x1x

k1
0 . . . x1x

kn
0 . Then the only products

of Lie monomials, which can have w in their expansion into words are the ones
which correspond to multi-indices k′, which are strictly smaller in the lexicographic
ordering than k. Thus

A(τ)w = (−1)nIA(k; τ) +
∑

k′<k

(−1)nλk′IA(k′; τ), (3.30)

and we conclude using the induction hypothesis.

3.3 Computing A-elliptic multiple zeta values

In this section, we describe a framework for describing A-elliptic multiple zeta val-
ues of some length n in terms of A-elliptic multiple zeta values of length n− 1 and
Eisenstein series. More precisely, it was proved by Enriquez [32] that A-elliptic mul-
tiple zeta values satisfy a (linear, first-order) differential equation, which is recursive
for the length. The constant term, which is lost by differentiation, can be restored
by considering the limit limτ→i∞A(τ). This enables a “length-by-length”-study of
A-elliptic multiple zeta values, the first steps of which have been carried out in
[14, 59]. The results presented in this section should be compared to the slightly
more general results of Chapter 5.

3.3.1 Differential equation

Let

IA(X1, . . . , Xn; τ) =
∑

k1,...,kn≥0
IA(k1, . . . , kn; τ)Xk1−1

1 . . . Xkn−1
n (3.31)

be the generating series of A-elliptic multiple zeta values of length n.

Theorem 3.3.1 (Enriquez). For all n ≥ 0, we have

2πi∂
∂τ
IA(X1, . . . , Xn; τ) = ℘∗τ (X1)IA(X2, . . . , Xn; τ)− ℘∗τ (Xn)IA(X1, . . . , Xn−1; τ)

+
n∑

i=2
(℘∗τ (Xi)− ℘∗τ (Xi−1))IA(X1, . . . , Xi−1 +Xi, . . . , Xn; τ),

(3.32)
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where ℘∗τ (α) = ∑∞
k=−1(2k + 1)G2k+2(τ)α2k is the modified Weierstrass ℘-function

and Gk(τ) denotes the Eisenstein series1 of weight k ≥ 0:

Gk(τ) =





−1 k = 0
∑

(m,n)∈Z2\{(0,0)}

1
(m+ nτ)k k ≥ 1. (3.33)

Proof: See [32], Théorème 3.2.

Note that Gk(τ) vanishes, if k is odd. Also for k ≥ 1, we have the Fourier expansion

G2k(τ) = 2ζ(2k) + 2(2πi)2k

(2k − 1)!

∞∑

n=1
σ2k−1(n)qn, (3.34)

where σl(n) = ∑
d|n d

l denotes the l-th divisor function.
Comparing coefficients on both sides of (3.32), we obtain the following explicit
formula for the τ -derivative of an individual A-elliptic multiple zeta value (cf. [14],
eq. (2.47))

2πi ∂
∂τ
IA(k1, . . . , kn; τ)

= k1Gk1+1(τ)IA(k2, . . . , kn; τ)− knGkn+1(τ)IA(k1, . . . , kn−1; τ)

+
n∑

i=2

{
(−1)ki(ki−1 + ki)Gki−1+ki+1(τ)IA(k1, . . . , ki−2, 0, ki+1, . . . , kn; τ) (3.35)

−
ki−1+1∑

k=0
(ki−1 − k)

(
ki + k − 1

k

)
Gki−1−k+1(τ)IA(k1, . . . , ki−2, k + ki, ki+1, . . . , kn; τ)

+
ki+1∑

k=0
(ki − k)

(
ki−1 + k − 1

k

)
Gki−k+1(τ)IA(k1, . . . , ki−2, k + ki−1, ki+1, . . . , kn; τ)

}
.

Solving (3.35) iteratively gives a recursive formula for A-elliptic multiple zeta values in
terms of iterated integrals of Eisenstein series, which will be studied in detail in length
two in Chapter 4 and in all lengths in Chapter 5. What is missing is the constant of
integration, or more precisely, the constant term a0 in the Fourier expansion of A-elliptic
multiple zeta values (Proposition 3.1.4).

1The two cases k = 1, 2 require the Eisenstein summation prescription

∑

m,n∈Z
am,n ≡ lim

N→∞
lim
M→∞

N∑

n=−N

M∑

m=−M
am,n.
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3.3.2 Constant term procedure
In this section, we show how to retrieve the constant term a0 in the Fourier expansion
of A-elliptic multiple zeta values using the degeneration properties of the elliptic KZB-
associator. The main result is the following proposition, which is implicitly already con-
tained in [32].

Proposition 3.3.2. The constant term in the Fourier expansion of IA(k1, . . . , kn; τ) equals
(−1)n times the coefficient of adkn(x0)(x1) . . . adk1(x0)(x1) in the series

eπitΦ(ỹ, t)e2πiỹΦ(ỹ, t)−1, (3.36)

where t = −[x0, x1] and ỹ = − ad(x0)
e2πi ad(x0)−1(x1) = − 1

2πi
∑
n≥0

Bn
n! (2πi)n adn(x0)(x1), where

Bn denotes the n-th Bernoulli number. Moreover, all other Fourier coefficients are con-
tained in Z[(2πi)−1].

Proof: By Proposition 3.2.1, we know that IA(k1, . . . , kn; τ) is equal to the coefficient of
(−1)n adkn(x0)(x1) . . . adkn(x0)(x1) in A(τ). Therefore, IA

0 (k1, . . . , kn) can be retrieved as
the coefficient of (−1)n adkn(x0)(x1) . . . adkn(x0)(x1) in the series

A∞ := lim
τ→i∞

A(τ)eπitΦ(ỹ, t)e2πiỹΦ(ỹ, t)−1, (3.37)

where ỹ = − ad(x0)
e2πi ad(x0)−1(x1) and t = − ad(x0)(x1). Since the series ỹ has coefficients

in Q[(2πi)±], this shows that the constant terms of A-elliptic multiple zeta values are
contained in Z[(2πi)−1]. The fact that all higher Fourier coefficients are also contained in
Z[(2πi)−1] follows from this, together with the recursive differential equation (3.3.1) and
the Fourier expansion of the Eisenstein series

G2k(τ) = 2ζ(2k) + 2(2πi)2k

2(2k − 1)!

∞∑

n=1

n2k−1qn

1− qn , (3.38)

valid for all k ≥ 1, which shows in particular that the Fourier coefficients of G2k(τ) are
contained in Q[2πi].

Example 3.3.3. If (k1, . . . , kn) ∈ (Z≥0)n is a multi-index with ki 6= 1 for all i, then

IA
0 (k1, . . . , kn) = 1

n!

n∏

i=1

Bki
ki!

(2πi)ki . (3.39)

This follows from Proposition 3.3.2, more precisely from (3.36), since if ki 6= 1 for all i,
then only the middle e2πiỹ-factor in (3.36) contributes. Indeed, every word occurring in the
series eπit, Φ(ỹ, t) and Φ(ỹ, t)−1 contains at least one ad(x0)(x1)-factor, which corresponds
to ki = 1 for some i.
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For a general multi-index (k1, . . . , kn) with some entries ki = 1, a closed formula seems
very cumbersome to write down. Some explicit examples can be obtained by expanding
(3.36) in low lengths, using a computer algebra software, like in our case Mathematica2

IA
0 (1, 0) = − iπ2 , IA

0 (1, 0, 0) = − iπ4 , IA
0 (1, 0, 0, 0) = − iπ12 −

ζ(3)
24ζ(2) , (3.40)

which generalizes to

IA
0 (1, 0, . . . , 0︸ ︷︷ ︸

r

) = − 2πi
4(r − 1)! +

br/2c−1∑

k=1

1
(r − (2k + 1))!

ζ(2k + 1)
(2πi)2k , (3.41)

and shows that every odd Riemann zeta value arises as the constant term of some linear
combination of A-elliptic multiple zeta value. Examples involving multiple zeta values of
higher depth as opposed to Riemann single zeta values are a bit harder to come by, since
one has to go to very high lengths. The first example of a multiple zeta value, which
is not given by a polynomial in Riemann single zeta values occurs in weight 8, and is
(for example) given by ζ(3, 5) (cf. [17], Section 2.5). An A-elliptic multiple zeta value
having ζ(3, 5) occurring in its constant term is given by IA(1, 0, 0, 1, 0, 0, 0, 0, 0; τ), which
has length 9. More precisely,

IA
0 (1, 0, 0, 1, 0, 0, 0, 0, 0) = 1

(2πi)6

(
− ζ(3, 5)− 2ζ(2)ζ(3)2 − 6πiζ(3)ζ(4) + 12πiζ(2)ζ(5)

+ ζ(3)ζ(5)− 21
2 πiζ(7) + 10ζ(8)

)
. (3.42)

In fact, we will see in Theorem 5.4.2 that, up to powers of 2πi, all multiple zeta values arise
as constant terms of A-elliptic multiple zeta values (a similar result holds for B-elliptic
multiple zeta values).

3.3.3 Example of the Fourier expansion
In this section, we will show how to use the differential equation and constant term pro-
cedure to compute the Fourier expansion of IA(0, 1, 0, 0; τ).
First, we get from (3.35) that

2πi d
dτ I

A(0, 1, 0, 0; τ) = IA(0, 2, 0; τ)− IA(0, 0, 2; τ). (3.43)

2Mathematica is a trademark of Wolfram Research Inc. The implementation used to generate
the examples was obtained in joint work with Johannes Broedel, and can be found on the DVD
attached to the dissertation. In order to simplify the resulting multiple zeta values, we used the
multiple zeta value data mine [10].
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3.4. B-elliptic multiple zeta values

Differentiate the last equation once more to obtain, again from (3.35),

(2πi)2 d2

d2τ
IA(0, 1, 0, 0; τ) = 4IA(0, 3; τ)− 2IA(3, 0; τ) = 6IA(0, 3; τ), (3.44)

where the last equation follows from the reflection relation (Proposition 3.1.7). One last
differentiation gives

(2πi)3 d3

d3τ
IA(0, 1, 0, 0; τ) = −18G4(τ)IA(0; τ)− 18IA(4; τ) = −6(2πi)4

∞∑

n=1
σ3(n)qn,

(3.45)
where in the last equation, we have used that IA(2k; τ) = −2ζ(2k) (cf. Proposition 3.1.8)
and the Fourier expansion of the Eisenstein series G4(τ) (cf. (3.34)). Integrating (3.45)
three times and supplementing the constant term, which by the constant term procedure
is given by

IA
0 (0, 1, 0, 0) = −3 ζ(3)

(2πi)2 , (3.46)

we finally obtain the desired Fourier expansion

IA(0, 1, 0, 0; τ) = −3 ζ(3)
(2πi)2 + 6

(2πi)2

∞∑

n=1

σ3(n)
n3 qn, (3.47)

where we used that
∫ i∞
τ e2πinτ1dτ1 = − 1

2πine
2πinτ .

3.4 B-elliptic multiple zeta values

We have seen that A-elliptic multiple zeta values are defined as iterated integrals along
the path α on a once-punctured elliptic curve E×τ , corresponding to the interval [0, 1] in
C. There is another canonical path β on E×τ , given by the straight line path from 0 to τ
in C. It corresponds to the series B(τ) of the elliptic KZB associator.

0 1

τ τ + 1

[0, 1]

[0, τ ]

Moreover, we have seen that the Q-vector space spanned by the A-elliptic multiple zeta
values equals the Q-vector space spanned by the coefficients of the series A(τ) arising as
part of the elliptic KZB associator (cf. Definition 2.3.3).
In this section, we define B-elliptic multiple zeta values in two ways: as coefficients of
B(τ), and as iterated integrals

∫
β ω

(k1) . . . ω(kn) of the forms ω(k) along the path β. The
latter definition is essentially the same as Enriquez’s [32], while the first seems to be new.
At the end of this section, we compare the two versions of B-elliptic multiple zeta values.
Although they are rather similar, we show that they do not span the same Q-vector space.
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3.4.1 Enriquez’ B-elliptic multiple zeta values
Definition 3.4.1. Define Enriquez’ B-elliptic multiple zeta value IB(k1, . . . , kn; τ) to be
the coefficient of adk1(x0)(x1) . . . adkn(x0)(x1) in the series

lim
ε→0

(−2πiετ)ad(x0)(x1) exp
[ ∫ (1−ε)τ

ετ
ad(x0)Ωτ (ξ, ad(x0))(x1)

]
(−2πiετ)− ad(x0)(x1). (3.48)

The Enriquez B-elliptic multiple zeta value IB(k1, . . . , kn; τ) is similar to the A-elliptic
multiple zeta value IA(k1, . . . , kn; τ), the only difference being that the path α = [0, 1] has
been replaced by the path β = [0, τ ]. As for IA, the weight of IB(k1, . . . , kn; τ) is the sum
k1 + . . . + kn, and its length is n. If k1, kn 6= 1, then ω(k1) and ω(kn) have no poles at 0
and 1, and IA(k1, . . . , kn) is equal to the bona fide convergent iterated integral

IB(k1, . . . , kn; τ) =
∫ τ

0
ω(k1) . . . ω(kn), (3.49)

where the path of integration is the straight line path from 0 to τ .

Definition 3.4.2. Define the Q-vector space of Enriquez B-elliptic multiple zeta values
to be

EZB−Enr = 〈IB(k1, . . . , kn; τ) | k1, . . . , kn ≥ 0〉Q. (3.50)

and for k, n ≥ 0, define

Ln(EZB−Enr
k ) = 〈IB(k1, . . . , kr; τ) | k1 + . . .+ kn = k, r ≤ n〉Q ⊂ EZB−Enr. (3.51)

Essentially the same argument as in the proof of Proposition 3.1.6 shows the

Proposition 3.4.3. For all k, k′, n, n′ ≥ 0, we have

Ln(EZB−Enr
k )Ln′(EZB−Enr

k′ ) ⊂ Ln+n′(EZB−Enr
k+k′ ), , (3.52)

i.e. EZB−Enr is a bi-filtered Q-subalgebra of O(H), the C-algebra of holomorphic functions
on H. More precisely, we have

IB(k1, . . . , kr; τ)IB(kr+1, . . . , kr+s; τ) =
∑

σ∈Σ(r,s)
IB(kσ(1), . . . , kσ(r+s); τ), (3.53)

where Σ(r, s) denotes the set of (r, s)-shuffles as in Proposition 3.1.6

The next proposition gives a very precise comparison between A-elliptic and Enriquez’
B-elliptic multiple zeta values. This fact already been proved by Enriquez ([32], Section
2.5), but we repeat his argument here for completeness, and also since our notation is
slightly different.
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3.4. B-elliptic multiple zeta values

Proposition 3.4.4. For all k1, . . . , kn, we have the equality

IB(k1, . . . , kn; τ) = τk1+...+kn−nIA(k1, . . . , kn;−1/τ). (3.54)

Proof: First, it follows from the modularity properties of the Kronecker series (Proposi-
tion 2.1.2 iv)) that

Ωτ (τ · ξ, α) = τ−1Ω−1/τ (ξ, τ−1 · α). (3.55)

Consequently, we have the equality of generating series

lim
ε→0

(−2πiετ)ad(x0)(x1) exp
[ ∫ (1−ε)τ

ετ
ad(x0)Ωτ (ξ, ad(x0))(x1)

]
(−2πiετ)− ad(x0)(x1)

= lim
ε→0

(−2πiε)ad(x0)(x1) exp
[ ∫ (1−ε)

ε
ad(x0)Ωτ (τ · ξ, ad(x0))(x1)

]
(−2πiε)− ad(x0)(x1)

= lim
ε→0

(−2πiε)ad(x0)(x1) exp
[ ∫ (1−ε)

ε
(τ)−1 ad(x0)Ω−1/τ (ξ, (τ)−1 ad(x0))(x1)

]

× (−2πiε)− ad(x0)(x1). (3.56)

Now the coefficient of adk1(x0)(x1) . . . adkn(x0)(x1) is precisely equal to

τn−(k1+...+kn)IA(k1, . . . , kn;−1/τ), (3.57)

and the Proposition follows.

Remark 3.4.5. Note that the preceding proposition does not imply that one can identify
IA and IB−Enr in a straightforward fashion. Namely, the map of sets

EZA → EZB−Enr

IA(k1, . . . , kn; τ) 7→ IB(k1, . . . , kn; τ) (3.58)

is not a morphism of Q-vector spaces, the problem being that A-elliptic multiple zeta
values are not graded for the length. For example, we have

1
2I

A(0; τ) = 1
2 = IA(0, 0; τ), (3.59)

while on the other hand

IB(0; τ) = τ, IB(0, 0; τ) = τ2

2 , (3.60)

hence there is no Q-linear relation between IA(0; τ) and IB(0, 0; τ).
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Chapter 3. Elliptic multiple zeta values

3.4.2 B-elliptic multiple zeta values and elliptic associators
We now propose a slightly different definition of B-elliptic multiple zeta values. Recall the
definition of the series B(τ), which was a part of the elliptic KZB associator.

Definition 3.4.6. Define the Q-vector space of B-elliptic multiple zeta values to be

EZB = 〈B(τ)|w |w ∈ 〈x0, x1〉〉Q ⊂ O(H), (3.61)

where O(H) denotes the C-algebra of holomorphic functions on H.
For integers k, n ≥ 0, we also define

Ln(EZB
k ) := 〈B(τ)|w | degx0(w) = k, degx1(w) ≤ n〉Q. (3.62)

Since B(τ) is a group-like series, the next proposition follows from Proposition A.1.7 and
the definition of the shuffle product of words (A.16). The same method would give an
alternative proof of Proposition 3.1.6.

Proposition 3.4.7. EZB is a bi-filtered Q-subalgebra of O(H). More precisely, for all
numbers k, n, k′, n′ ≥ 0, we have

Ln(EZB
k ) · Ln′(EZB

k′) ⊂ Ln+n′(EZB
k+k′). (3.63)

Let

BEnr(τ) =
∑

n≥0
(−1)n

∑

k1,...,kn

IB(k1, . . . , kn; τ) adkn(x0)(x1) . . . adk1(x0)(x1). (3.64)

Comparing with Definition 3.4.1, we see that

BEnr(τ) =
[

lim
ε→0

(−2πiετ)ad(x0)(x1) exp
[ ∫ (1−ε)τ

ετ
− ad(x0)Ωτ (ξ, ad(x0))(x1)

]

× (−2πiετ)− ad(x0)(x1)
]op

. (3.65)

The following proposition has essentially already been proved by Enriquez in [32], Propo-
sition 2.8. The proof given there can be adapted straightforwardly to our situation.

Proposition 3.4.8. We have

BEnr(τ) = τad(x0)(x1) exp
(2πi
τ
e+

)
B(τ)τ− ad(x0)(x1), (3.66)

where e+ is the unique derivation of L, which sends x0 7→ 0 and x1 7→ x0
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Proof: By definition
B(τ) = H1(z)−1H0(z), (3.67)

where H0, H1 are solutions to the differential equation

dH(s) =
(
2πix0ds− τ ad(x0)e2πis·ad(x0)Fτ (s · τ, ad(x0))(x1)

)
H(s)ds (3.68)

with asymptotics

H0(z) ∼ (−2πiz)− ad(x0)(x1), z → 0

H1(z) ∼ (−2πi(1− z))− ad(x0)(x1), z → 1. (3.69)

Applying the automorphism exp
(

2πi
τ e+

)
to the right hand side of (3.68), we obtain the

equation

dHEnr(s) =
(
−τ ad(x0)e2πis·ad(x0)Fτ (s · τ, ad(x0))(x1)

)
HEnr(s)ds (3.70)

It follows from the general theory of iterated integrals as solutions to differential equations
(cf. Section A.2.2) that

BEnr(τ) = (HEnr
1 (z))−1HEnr

0 (z), (3.71)

where HEnr
0 (z), HEnr

1 (z) are the unique solutions to (3.70) with asymptotics

HEnr
0 (z) ∼ (−2πiτz)− ad(x0)(x1), z → 0

HEnr
1 (z) ∼ (−2πiτ(1− z))− ad(x0)(x1), z → 1. (3.72)

Hence
exp

(2πi
τ

)
B(τ) = τ− ad(x0)(x1)BEnr(τ)τad(x0)(x1), (3.73)

where the extra factors τ± ad(x0)(x1) take into account the difference of the asymptotics
between HEnr

i and Hi, for i = 0, 1. The proposition now follows.

3.4.3 Comparison of the two versions of B-elliptic multiple
zeta values

In the last sections, we have seen two versions of B-elliptic multiple zeta values: Enriquez’s
version [32] as iterated integrals

IB(k1, . . . , kn; τ) =
∫

β
ω(k1) . . . ω(kn) (3.74)

on the one hand, and the coefficients of the series B(τ) on the other. Both versions are
given by values of iterated integrals along the path β on the punctured elliptic curve
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E×τ , however the coefficients of B(τ) are given by values of homotopy invariant iterated
integrals, while the IB(k1, . . . , kn; τ) are not.
More concisely, the series B(τ) is obtained by iterated integration of the integrable dif-
ferential form ωKZB (cf. Proposition 2.2.3), the generating series of IB(k1, . . . , kn; τ) is
obtained by iterated integration of the differential form ad(x0)Ωτ (ξ, ad(x0))(x1)dξ, which
is easily seen not to be integrable (its differential is non-zero, since it is non-holomorphic,
but its wedge product with itself vanishes), and one needs to add to it the differential form
ν = 2πidr to obtain an integrable one-form. Therefore, it seems more reasonable for us
to define B-elliptic multiple zeta values as the coefficients of B(τ).
One may wonder whether the issue of integrability vs. non-integrability makes a difference
between the two algebras EZB and EZB−Enr. In fact, we have seen in Theorem 3.2.2 that
the Q-vector space spanned by the A-elliptic multiple zeta values IA(k1, . . . , kn; τ) equals
the Q-vector space spanned by the coefficients of A(τ), a non-commutative power series
in the variables x0, x1, which is part of the elliptic KZB associator. More precisely, the
result is that

Ln(EZA
k ) = 〈A(τ)w |w of length n and weight k〉Q, (3.75)

where the weight of a word w ∈ 〈x0, x1〉 is its degree in x0 and the length is its degree
in x1. But for this result to hold, we used crucially that A-elliptic multiple zeta values
are special values of iterated integrals along the path α, and since the differential form
ν vanishes along α, the pullbacks of ωKZB and ad(x0)Ωτ (ξ, ad(x0)))(x1)dξ along α agree,
and consequently, the generating series of A-elliptic multiple zeta values can be identified
with A(τ) via the formula

A(τ) =
∑

n≥0
(−1)n

∑

k1,...,kn

IA(k1, . . . , kn; τ) adkn(x0)(x1) . . . adk1(x0)(x1), (3.76)

cf. Proposition 3.2.1.
For the two versions of B-elliptic multiple zeta values, the equality 3.75 breaks down, and
it is no longer true that for all n, k ≥ 0, the space Ln(EZB−Enr)k equals

Ln(EZB)k = 〈B(τ)w |w of length ≤ n and weight k〉Q. (3.77)

For example, L1(EZB−Enr
1 ) = Q·IB(1; τ) = {0}, by Proposition 3.4.4, using that IA(1; τ) =

0 (cf. Proposition 3.1.8). But the word x0 has length zero and weight one, and B(τ)|x0 =
2πi 6= 0, by Proposition 2.3.5 ii), showing that

L1(EZB−Enr)1 6= 〈B(τ)w |w of length ≤ 1 and weight 1〉Q. (3.78)

52



Chapter 4

A-elliptic double zeta values

In this section, we study the Q-vector space grL2 (EZA
k ) := L2(EZA

k )/L2(EZA
k ) of A-elliptic

double zeta values of weight k ≥ 0. The main result is a formula for the dimension of
grL2 (EZA

k ), as well as a complete description of all Q-linear relations between A-elliptic
double zeta values.

4.1 Differential equation and constant term in length two

We begin by considering both the differential equation and the constant term procedure,
given in the last section for A-elliptic multiple zeta values of arbitrary length, in full detail
in the case of length two.

Proposition 4.1.1. We have

2πi ∂
∂τ
IA(0, r; τ) = (−1)r2πi ∂

∂τ
IA(r, 0; τ)

= −rGr+1(τ)IA(0) + rG0(τ)IA(r + 1), (4.1)

and if r, s 6= 0

2πi ∂
∂τ
IA(r, s; τ) = −sGs+1(τ)IA(r) + rGr+1(τ)IA(s)

− (−1)r(r + s)Gr+s+1(τ)IA(0)

+
r+s+1∑

n=1
(r + s− n)

((
n− 1
r − 1

)
−
(
n− 1
s− 1

))
Gr+s+1−n(τ)IA(n), (4.2)

where Gk(τ) denotes the Eisenstein series of weight k as in (3.33). In particular, we have
∂
∂τ I

A(r, s; τ) = 0 if the weight r + s is even.

Proof: The equations (4.1) and (4.2) are obtained from (3.35) in the case n = 2. The
vanishing of ∂

∂τ I
A(r, s; τ) for r+ s even follows from this, bearing in mind that Gk(τ) and

IA(k; τ) vanish, if k is odd (the latter follows from Proposition 3.1.8).
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Proposition 4.1.2. We have

IA
0 (r, s) =





0, if r = s = 1

−BrB1(2πi)r+1

2r! , if s = 1 and r 6= 1

BrBs(2πi)r+s
2r!s! , else,

(4.3)

where the Bn are the Bernoulli numbers. In particular, we have IA(1, 1; τ) = 0 and

IA(r, s; τ) = BrBs(2πi)r+s
2r!s! , r + s ∈ 2Z, r 6= 1 or s 6= 1. (4.4)

Proof: From Proposition 3.3.2, we know that the constant term IA
0 (r, s) of IA(r, s; τ) is

equal to the coefficient of ads(x0)(x1) adr(x0)(x1) in the series

eπitΦ(ỹ, t)e2πiỹΦ(ỹ, t)−1, (4.5)

which gives (4.3). The formula for IA(r, s; τ) in the case r + s is even is obtained from
(4.3), together with Proposition 4.1.1

Now consider the indefinite Eisenstein integrals

G(k; τ) :=





0 if k is odd,

∫ i∞

τ
Gk(τ ′)− 2ζ(k)dτ ′ −

∫ τ

0
2ζ(k)dτ ′ if k is even.

(4.6)

Integrating the Fourier expansion of the Eisenstein series G2k(τ), one gets the formula1

G(2k; τ) = −2ζ(2k) · τ + (2πi)2k−1

2(2k − 1)!

∞∑

n=1

σ2k−1(n)
n

qn. (4.7)

It is easy to see that ∂
∂τ G(k; τ) = −Gk(τ) for all k ≥ 0. Therefore, combining Propositions

4.1.1 and 4.1.2, we obtain closed formulas for A-elliptic double zeta values as linear com-
binations of products IA(k; τ) and G(k; τ). Slightly more precisely, we have the following

Proposition 4.1.3. Every A-elliptic double zeta value IA(r, s; τ) can be written as

IA
0 (r, s; τ) + 1

2πi

r+s+1∑

j=0
λjI

A(j; τ)G(r + s+ 1− j; τ), (4.8)

where IA
0 (r, s; τ) ∈ Q(2πi)r+s. Note that IA(j; τ) ∈ Q(2πi)j, by Proposition 3.1.8.

Also, higher length A-elliptic multiple zeta values can be written in terms of so-called
iterated Eisenstein integrals, cf. Chapter 5.

1Note the exponent 2k − 1 in the prefactor (2πi)2k−1

2(2k−1)! . This is not a typo, and comes from the
fact that ∂

∂τ = 2πiq ∂∂q .
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4.2 The weight-grading for A-elliptic double zeta values

Using the representation of A-elliptic double zeta values as integrals of Eisenstein series,
we can prove that every Q-linear relation between A-elliptic double zeta values decomposes
into a family of Q-linear relations, one for each weight k. The precise version is as follows.

Theorem 4.2.1. Let ⊕k≥0 L2(EZA
k ) be the direct sum of the Q-vector spaces L2(EZA

k ).
The natural map

⊕

k≥0
L2(EZA

k )→
∑

k≥0
L2(EZA

k ) ⊂ EZA (4.9)

induced by the inclusions L2(EZA
k ) ⊂ EZA is injective.

Proof: Let
n∑

i=1
λiI

A(ri, si; τ) = 0, λi ∈ Q (4.10)

be a Q-linear relation between A-elliptic double zeta values. By Proposition 4.1.3, the
relation (4.10) must hold simultaneously for both the constant terms of the IA(ri, si), i.e.

n∑

i=1
λiI

A
0 (ri, si) = 0, (4.11)

and for the non-constant terms, which are given by Eisenstein integrals. Using that
IA

0 (r, s) ∈ Q(2πi)r+s and the transcendence of π, we see that

n∑

i=1
λiI

A
0 (ri, si; τ) = 0 =⇒

∑

i, ri+si=k
λiI

A
0 (ri, si) = 0, ∀k. (4.12)

On the other hand, again by Proposition 4.1.3, the non-constant term of IA(r, s; τ) is given
by a Q-linear combination

r+s+1∑

j=0
µj(2πi)jG(r + s+ 1− j; τ), µj ∈ Q (4.13)

of homogeneous degree r+s+1, where 2πi has degree one and G(k; τ) has degree k. Since
the family of Eisenstein series G2k(τ) is linearly independent over C, the same is true for
the family of indefinite Eisenstein integrals. Moreover, it follows that the family of all
products (2πi)jG(2k; τ) is linearly independent over Q, again using the transcendence of
π. Thus

n∑

i=1
λiI

A(ri, si; τ) = 0⇒
∑

i, ri+si=k
λiI

A(ri, si; τ) = 0, ∀k, (4.14)

which proves the result.
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4.3 Relations between elliptic double zeta values

We have already seen that A-elliptic multiple zeta values satisfy the shuffle product (Propo-
sition 3.1.6)

IA(k1, . . . , kr; τ)IA(kr+1, . . . , kr+s; τ) =
∑

σ∈Σ(r,s)
IA(kσ(1), . . . , kσ(r+s); τ) (4.15)

as well as the reflection relation (Proposition 3.1.7)

IA(k1, . . . , kn; τ) = (−1)k1+...+knIA(kn, . . . , k1; τ). (4.16)

There exists a third type of algebraic relation between A-elliptic multiple zeta values,
the Fay relations, which arise from the Fay identity for the Kronecker series (Proposition
2.1.2). We only treat the case of length two, and refer to [14] for Fay relations for A-elliptic
multiple zeta values of higher lengths.

Proposition 4.3.1. (Fay relation) For r, s ≥ 0, we have

IA(r, s; τ) = δr,1δs,13ζ(2)− (−1)sIA(0, r + s; τ)

+
s∑

n=0
(−1)s−n

(
r − 1 + n

r − 1

)
IA(r + n, s− n; τ)

+
r∑

n=0
(−1)s+n

(
s− 1 + n

s− 1

)
IA(s+ n, r − n; τ). (4.17)

Proof: If r = s = 1, then (4.17) becomes

IA(1, 1; τ) = −2IA(1, 1; τ) + IA(0, 2; τ) + 2IA(2, 0; τ) + 3ζ(2), (4.18)

which holds by Proposition 3.1.10. If r 6= s, then we can assume that s 6= 1, using the
reflection relation IA(r, s; τ) = (−1)r+sIA(s, r; τ), if necessary. Now choose ε > 0 and
consider the function

Ξr,sε (x) =
∫ x

ε
f (s)(ξ2 − x)

∫ ξ2

ε
f (r)(ξ1)dξ1dξ2, (4.19)

for x ∈ [ε, 1]. Since s 6= 1, f (s) is smooth on [0, 1] (Proposition 2.1.3.(i)), and thus Ξr,sε
is smooth on [0, 1] as well. Moreover, we have limε→0 Ξr,sε (1) = IA(r, s; τ), due to the
periodicity of f (s) (Proposition 2.1.2, iii)). Now

Ξr,sε (t) =
∫ t

ε
(Ξr,sε )′(x)dx =

∫ t

ε

∫ x

ε
f (s)(ξ2 − x)f (r)(ξ2)dξ2dx. (4.20)

Using the Fay identity (Proposition 2.1.2, vi)), we get

Ξr,sε (t) =
∫ t

ε

∫ x

ε

{
−(−1)sf (r+s)(x) +

s∑

n=0

(
r − 1 + n

r − 1

)
f (s−n)(−x)f (r+n)(ξ2)

56
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+
r∑

n=0

(
s− 1 + n

s− 1

)
f (s+n)(ξ2 − x)f (r−n)(x)

}
dξ2dx. (4.21)

Now we evaluate both sides at t = 1 and pass to the limit ε→ 0 to obtain the result.

The reflection, shuffle and Fay relations can also be expressed as functional identities for
the generating series

IA(X,Y ; τ) =
∑

k,l≥0
IA(k, l; τ)Xk−1Y l−1. (4.22)

We summarize these in the following

Corollary 4.3.2. The series IA(X,Y ; τ) satisfies the following identities.

(i) (Reflection relation)
IA(X,Y ; τ) = IA(−Y,−X; τ) (4.23)

(ii) (Shuffle relation)

IA(X,Y ; τ) + IA(Y,X; τ) = IA(X; τ)IA(Y ; τ) (4.24)

(iii) (Fay relation)

IA
∗ (X,Y ; τ) + IA

∗ (X + Y,−Y ; τ) + IA
∗ (−X − Y,X; τ) = 0, (4.25)

where IA
∗ (X,Y ; τ) := IA(X,Y ; τ)+ 1

2I
A(2; τ), using that ζ(2) = −1

2I
A(2; τ) (Propo-

sition 3.1.8).

4.4 The Fay-shuffle space

We introduce a graded Q-vector space of rational functions, which encodes the Q-linear
relations satisfied by A-elliptic double zeta values. Denote by V̂d ⊂ Q(X,Y ) the subspace
of rational functions P of degree d, such that XY ·P is a polynomial (necessarily of degree
d+ 2)

V̂d = {P ∈ Q(X,Y )d |XY · f ∈ Q[X,Y ]}. (4.26)

Definition 4.4.1. For d ≥ −2, we define the length two Fay-shuffle space of degree d,
FSh2(d), as the set of rational functions P ∈ V̂d, which satisfy

P (X,Y ) + P (X + Y,−Y ) + P (−X − Y,X) = 0, P (X,Y ) + P (Y,X) = 0. (4.27)

By substituting X 7→ −Y and Y 7→ −X, one sees that P ∈ FSh2(d) necessarily satisfies
the reflection relation P (X,Y ) = P (−Y,−X). This implies the
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Chapter 4. A-elliptic double zeta values

Proposition 4.4.2. If d is even, then FSh2(d) = {0}.

Proof: Every P ∈ FSh2(d) satisfies

P (X,Y ) = P (−Y,−X), P (X,Y ) = −P (Y,X) (4.28)

hence P ≡ 0, if d is even.

Proposition 4.4.3. For all d ≥ 0, we have

dimQ grL2 EZA
k ≤ dimQ FSh2(k − 2). (4.29)

Proof: Let (V̂k−2)∗ be the dual space of V̂k−2. Recall from the last section that the
generating series IA(X,Y ; τ) of A-elliptic double zeta values satisfies the equations

IA(X,Y ; τ) + IA(Y,X; τ) = IA(X; τ)IA(Y ; τ), (4.30)

IA
∗ (X,Y ; τ) + IA

∗ (X + Y,−Y ; τ) + IA
∗ (−X − Y,X; τ) = 0, (4.31)

where IA
∗ (X,Y ; τ) := IA(X,Y ; τ) + 1

2I
A(2; τ). It follows from Proposition 3.1.8 that the

product of two A-elliptic zeta values is again a rational multiple of an A-elliptic zeta value.
Thus

IA(X,Y ; τ) + IA(Y,X; τ) ≡ 0 mod L1(EZA), (4.32)

IA(X,Y ; τ) + IA(X + Y,−Y ; τ) + IA(−X − Y,X; τ) ≡ 0 mod L1(EZA). (4.33)

Since these two equations are precisely the defining equations of the Fay-shuffle space, the
natural surjection

(V̂k−2)∗ → grL2 EZA
k

(Xr−1Y s−1)∗ 7→ IA(r, s; τ) mod L1(EZA
k ) (4.34)

factors through the annihilator FSh2(k − 2)0 ⊂ (V̂k−2)∗ of the subspace FSh2(k − 2), and
therefore

dimQ grL2 EZA
k ≤ dimQ

[
(V̂k−2)∗/(FSh2(k − 2)0)

]
= dimQ FSh2(k − 2). (4.35)

4.4.1 The dimension of the Fay-shuffle space
The goal of this section is to prove the following

Theorem 4.4.4. We have

dimQ FSh2(d) =





0, if d is even
⌊
d+2

3

⌋
+ 1, if d is odd.

(4.36)
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For even d, the theorem follows from Proposition 4.4.2. For odd d, the proof is divided
into two propositions. First, if d is odd, the space FSh2(d) splits into a polynomial part,
and a non-polynomial part as follows.

Proposition 4.4.5. For odd d ≥ −1, we have a short exact sequence

0 −→ FSh2(d)pol −→ FSh2(d) −→ Q −→ 0, (4.37)

where FSh2(d)pol = FSh2(d)∩Q[X,Y ] denotes the polynomial part of the Fay-shuffle space
and the map on the right is given by

P 7→ Coeff. of Xd+1

Y in P. (4.38)

A splitting is given by mapping 1 ∈ Q to

P̃ (X,Y ) = Xd+1

Y
− Y d+1

X
− Xd+1 − Y d+1

X + Y
. (4.39)

Proof: That P̃ satisfies the Fay-shuffle equations is seen by a direct computation (here
we use that d is odd). To show exactness, note that from the definition of FSh2(d), an
element P (X,Y ) ∈ FSh2(d) \ FSh2(d)pol necessarily has the form

a
Xd+1

Y
+ b

Y d+1

X
+Q(X,Y ), (4.40)

where Q(X,Y ) ∈ Q[X,Y ] is some specific polynomial, and a, b ∈ Q are not both equal to
zero. Hence, we have

dimQ FSh2(d)pol + 1 ≤ dimQ FSh2(d) ≤ dimQ FSh2(d)pol + 2. (4.41)

But from the shuffle equation P (X,Y ) + P (Y,X) = 0, one sees that in (4.40), it holds
that a = −b, and thus dimQ FSh2(d) = dimQ FSh2(d)pol + 1.

In order to prove Theorem 4.4.4, it thus suffices to compute the dimension of FSh2(d)pol,
in the case where d ≥ 1 is odd.

Theorem 4.4.6. For d ≥ 1 odd, we have

dimQ FSh2(d)pol =
⌊
d+ 2

3

⌋
. (4.42)

The proof of this result will occupy the rest of this subsection.
Proof:2 We will need some elements of the representation theory of the symmetric group S3

and also some invariant theory. Possible references are [71, 73]. Denote by Vd ⊂ Q[X,Y ]
2The proof given here, which simplifies the author’s original proof, was communicated by Francis

Brown.
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the subspace of homogeneous polynomials of degree d. The group GL2(Q) acts on Vd on
the right by

P (X,Y )|M = P (aX + bY, cX + dY ), M =


a b

c d


 . (4.43)

Using this action, we turn Vd into an S3-representation by defining a morphism

S3 → GL2(Q)

(12) 7→

1 1

0 −1


, (123) 7→


−1 −1

1 0


 . (4.44)

From the classification of the irreducible representations of S3, we see that V1 is isomorphic
to the unique, irreducible two-dimensional S3-representation U (cf. [71], 2.5). Its character
χ1 is given by

χ1(1) = 2, χ1(12) = 0, χ1(123) = −1. (4.45)

Furthermore, Vd ∼= Symd U as S3-representations, and the generating series

χ :=
∑

d≥0
χdt

d (4.46)

of the characters χd of Vd is given by (cf. [73], Theorem 2.1)

χ(1) = 1
(1− t)2 , χ(12) = 1

1− t2 , χ(123) = 1
1 + t+ t2

. (4.47)

Consider now a decomposition

Vd =
n⊕

i=1
Wi (4.48)

of Vd into irreducible S3-subrepresentations of Vd, and denote by ud the number of theWi,
which are isomorphic to U .

Proposition 4.4.7. For every d, the number ud does not depend on the choice of decom-
position, and is given explicitly by the generating series

∑

d≥0
udt

d = t

(1− t)2(1 + t+ t2) . (4.49)

Proof: It is well-known that ud is independent of the decomposition, and that it is given
by the scalar product of χ1 and χd (cf. [71], 2.3). Computing the scalar product by means
of the generating series (4.47), we get the result.

Corollary 4.4.8. We have ud =
⌊
d+2

3

⌋
.

Using this result, Theorem 4.4.6 follows from
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Proposition 4.4.9. If d ≥ 1 is odd, then dimQ FSh2(d)pol = ud.

Proof: Recall that FSh2(d)pol ⊂ Vd is defined as the space of antisymmetric polynomials,
which satisfy the Fay relation

P (X,Y ) + P (X + Y,−Y ) + P (−X − Y,X) = 0 (4.50)

But if d is odd, then every P ∈ Vd satisfying the Fay relation is automatically antisym-
metric. Indeed, by applying (4.50) to the polynomial P (−Y,−X), we get

P (−Y,−X) + P (−X − Y,X) + P (X + Y,−Y ) = 0, (4.51)

and hence, by comparing with (4.50), P (X,Y ) = P (−Y,−X) = −P (Y,X).
The Fay relation (4.50) can be written using the S3-action defined in (4.44) as

P (X,Y ) + P (X,Y )(12) + P (X,Y )(123) = 0. (4.52)

Therefore, every non-zero P ∈ FSh2(d) spans a two-dimensional subrepresentation

UP = SpanQ{P (X,Y ), P (X,Y )(12)} ⊂ Vd, (4.53)

which is isomorphic to U . Clearly, if P ′ = λP with some λ ∈ Q×, then UP = UP ′ .
Conversely, given a subrepresentation Wi ⊂ Vd, which is isomorphic to U , we claim that
there exists w ∈Wi \ {0}, unique up to a non-zero scalar, such that

w + w(12) + w(123) = 0. (4.54)

Assuming this for a moment, we see that the assignments P 7→ UP and Wi 7→ w are
inverse to each other. In particular, the dimension of FSh2(d) equals the number of copies
of U in (4.48), and the proposition follows.
To prove the claim, we may realize the irreducible two-dimensional S3-representation U

as the hyperplane
U = {(x, y, z) ∈ Q3 |x+ y + z = 0}, (4.55)

with basis e1, e2, where ei is the i-th unit vector, and the action is given by (ei)σ = eσ−1(i).
By (4.54), and since (123) acts with trace −1 (again by the classification of irreducible
S3-representations), the action of (123) on e1, e2 is given by


−1 1
−1 0


 . (4.56)

Therefore, if u ∈ U satisfies u+ u(12) + u(123) = 0, then u must be a multiple of e1.

This ends the proof of Theorem 4.4.6.
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4.5 A lower bound for the space of elliptic double zeta values

We use the differential equation (Theorem 3.3.1) to prove a linear independence result for
A-elliptic double zeta values.

Theorem 4.5.1. Let k > 0 be odd, and n = bk3c.

(i) The set {
∂

∂τ
IA(r, k − r; τ) | 0 ≤ r ≤ n

}
(4.57)

is linearly independent over Q.

(ii) We have
dimQ L2(EZA

k ) ≥ n+ 1. (4.58)

Proof: First note that i) implies ii), as the A-elliptic double zeta values IA(r, k− r; τ) for
r = 0, . . . , n are linearly independent, since, by i), their derivatives are.
So assume there exists a relation

n∑

r=0
λr

∂

∂τ
IA(r, k − r; τ) = 0. (4.59)

with λr ∈ Q for r = 0, . . . , n. Substituting the differential equation for elliptic double zeta
values (Proposition 4.1.1) and multiplying both sides by 2πi, we obtain3

0 = λ0(kG0(τ)IA(k + 1)− kGk+1(τ)IA(0)) +
n∑

r=1
λr

(
− (k − r)Gk−r+1(τ)IA(r)

+ rGr+1(τ)IA(k − r)− (−1)rNGk+1(τ)IA(0)

+
k+1∑

s=1
(k − s)

((
s− 1
r − 1

)
−
(

s− 1
k − r − 1

))
Gk+1−s(τ)IA(s)

)
.

(4.60)

Since the Eisenstein series are linearly independent over C, and since the IA(2j) are
linearly independent over Q (they are non-zero multiples of (2πi)2j , cf. Proposition 3.1.8),
it follows that the family IA(2j)Gk+1−2j is linearly independent over Q. Thus, by (4.60)
there exist λ0, . . . , λn as above, if and only if the row vector Λk = (λ0, . . . , λn) ∈ Qn+1

solves the linear system of equations

Λk · Ck = (0, . . . , 0), (4.61)

3Here and in the following, for typographical reasons, we shall write IA(k) instead of IA(k; τ),
i.e. we suppress the τ -dependence (also note that IA(k; τ) does not depend on τ , by Proposition
3.1.8).

62



4.6. The main result on A-elliptic double zeta values

where Ck is the (n+ 1)× (k + 3)/2 matrix whose entry (Ck)r,s is given by

(Ck)r,s = Coefficient of λrIA(2s)Gk+1−2s(τ) in (4.60), 0 ≤ r ≤ n, 0 ≤ s ≤ k + 1
2 .

(4.62)
Hence, if we can prove that the rank of Ck is n + 1, we are done, because then (4.61)
has only the trivial solution Λk = (0, . . . , 0). Also, note that the first row of Ck is equal
to (−k, 0, . . . , 0, k) by (4.60). Therefore, if we can prove that among the columns of Ck
indexed by s = 1, . . . , (k − 1)/2, there are n linearly independent ones, Ck will have rank
exactly n + 1. For this, we can clearly assume that k ≥ 3, for there are no columns left
otherwise, and the Theorem would be trivially true.
To this end, consider, for k ≥ 3 and k odd, the square submatrix C ′k of Ck consisting of
the rows r = 1, . . . , n and the columns s = 1, . . . , n. Looking at (4.60) , we see that its
entries are given by

(C ′k)i,j = (k − 2j − 2)
((

2j + 1
i

)
− δ2j+1,i

)
, 0 ≤ i, j ≤ n− 1. (4.63)

Since k − 2j − 2 6= 0 for every j, as k is odd, it is enough to prove that the scaled matrix
Mn−1 = (mi,j) with

mi,j =
(

2j + 1
i

)
− δ2j+1,i, 0 ≤ i, j ≤ n− 1 (4.64)

is invertible for every n ≥ 1. This is proved in Section 4.8, Proposition 4.8.1.

4.6 The main result on A-elliptic double zeta values

The culmination of the work of the preceding subsections is the following

Theorem 4.6.1. (i) Let k ≥ 0 and Dell
k,2 := grL2 EZA

k . Then

Dell
k,2 =





0, if k is even

⌊
k

3

⌋
+ 1, if k is odd.

(4.65)

(ii) Every Q-linear relation between length-graded elliptic double zeta values is a conse-
quence of Fay and shuffle relations.

Proof: From Theorem 4.4.4, we know that, if k is even

dimQ grL2 EZA
k ≤ dimQ FSh2(k − 2) = 0, (4.66)
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which proves Theorem 4.6.1 in that case. For odd k, consider again the surjection (cf.
Proposition 4.4.3)

(V̂k−2)∗/FSh2(k − 2)0 → grL2 EZA
k

(X∗)r−1(Y ∗)s−1 7→ IA(r, s; τ) mod L1(EZA
k ). (4.67)

By Theorem 4.4.4, the left hand side has dimension
⌊
k
3

⌋
+ 1. On the other hand, by

Theorem 4.5.1, the elliptic double zeta values

IA(r, k − r; τ) 0 ≤ r ≤
⌊
k

3

⌋
(4.68)

are linearly independent over Q. Since L1(EZA
k ) = 0 if k is odd (cf. Proposition 3.1.8),

we get
dimQ grL2 EZA

k ≥
⌊
k

3

⌋
+ 1. (4.69)

Thus, (4.67) is an isomorphism, showing that dimQ grL2 EZA
k =

⌊
k
3

⌋
+ 1. Also, since there

are no non-trivial Q-linear relations between elliptic double zeta values of different weights
(cf. Theorem 4.2.1), the isomorphism (4.67) also shows that all Q-linear relations between
length-graded elliptic double zeta values are a consequence of Fay and shuffle relations.

4.7 A partial result in length three

In this chapter, we have proved a formula for Dell
k,2 for all k ≥ 0, using linear independence

results on A-elliptic double zeta values as well as representation theory of finite groups.
In principle, there seems to be no conceptual bottleneck in extending the computation
of Dell

k,n from n = 2 to all n. However, there are a few technical obstacles to surmount.
For example, the Fay-shuffle relations, whose study played a crucial role in this Chapter,
become more complicated in higher lengths. In fact, the Fay-shuffle relations are not
entirely well-defined for all lengths, and this will be the subject of an ongoing joint work
with P. Lochak and L. Schneps [56]. Furthermore, even if one had the Fay-shuffle relations
in all lengths, the representation theory involved in computing the associated Fay-shuffle
spaces is likely to become more involved. A similar picture emerged in the study of multiple
zeta values, where one has results in depths4 two [83] and three [40], but not in higher
depth. For these reasons, we contend ourselves with giving a partial result for n = 3.

Theorem 4.7.1. For k odd, we have

dimQ grL3 (EZA
k ) =

⌊
k + 1

6

⌋
. (4.70)

4Recall that the length of an A-elliptic multiple zeta value is the analogue of the depth of a
multiple zeta value.
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Proof: Since dimQ grL3 (EZA
k ) = dimQ L3(EZA

k )−dimQ L2(EZA
k ) = dimQ L3(EZA

k )−
⌊
k
3

⌋
−

1 by Theorem 4.6.1 (note that L1(EZA
k ) = {0}, if k is odd, which follows from Proposition

3.1.8), it suffices to prove that dimQ L3(EZA
k ) = k+1

6 +
⌊
k
3

⌋
+ 1 = k+1

2 .
In order to see this, note that by the shuffle product formula for A-elliptic multiple zeta
values (3.10), every IA(r; τ)IA(0, s; τ) with r even and s odd is an A-elliptic multiple zeta
value of length three and weight k := r + s. These are linearly independent over Q, since
IA(0, s; τ) = 1

2πiG0(s+ 1; τ) + πi
2 δs,1 by Proposition 4.1.1 and the discussion following it.

On the other hand, it follows from (3.35) that the differential equation for A-elliptic
multiple zeta values in length three is

2πi ∂
∂τ
IA(k1, k2, k3; τ)

= k1Gk1+1(τ)IA(k2, k3; τ)− krGkr+1(τ)IA(k1, k2; τ)

+
3∑

i=2

{
(−1)ki(ki−1 + ki)Gki−1+ki+1(τ)IA(k1, . . . , ki−2, 0, ki+1, . . . , k3; τ) (4.71)

−
ki−1+1∑

k=0
(ki−1 − k)

(
ki + k − 1

k

)
Gki−1−k+1(τ)IA(k1, . . . , ki−2, k + ki, ki+1, . . . , k3; τ)

+
ki+1∑

k=0
(ki − k)

(
ki−1 + k − 1

k

)
Gki−k+1(τ)IA(k1, . . . , ki−2, k + ki−1, ki+1, . . . , k3; τ)

}
.

If the weight k1 + k2 + k3 is odd, then every term on the right hand side of (4.71) is a
Q-linear combination of products Gr(τ)IA(s, t; τ), with r + s+ t even. Such a product is
non-vanishing, only if r is even, which implies that s+ t must be even as well. But in this
case, IA(s, t; τ) ∈ Q(2πi)r+s, by Proposition 4.1.2.
Now integrating both sides of (4.71), it follows that IA(k1, k2, k3; τ) is a Q-linear combi-
nation of products

(2πi)jG(k1 + k2 + k3 + 1− j; τ), (4.72)

and the constant term IA
0 (k1, k2, k3; τ) of IA(k1, k2, k3; τ). On the other hand, by the

results of Section 3.3.2, the constant term is non-vanishing, if and only if k1 = 1 and
k2, k3 are both even, or k3 = 1 and k1, k2 are both even. In the first case, IA

0 (k1, k2, k3)
is proportional to G2(τ)IA(k2, k3; τ) and in the second case IA

0 (k1, k2, k3) is proportional
to G2(τ)IA(k1, k2; τ). Thus, it follows that every A-elliptic multiple zeta value of length
three and odd weight k is a unique Q-linear combination of products

IA(r; τ)IA(0, s; τ), k = r + s, r even (4.73)

and the number of those is precisely equal to k+1
2 .

Theorem 4.7.1 only treats the case of odd weight elliptic multiple zeta values of length
three, which can be described using linear combinations of (single) Eisenstein integrals
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G(2k; τ). Even weight elliptic multiple zeta values involve double Eisenstein integrals, i.e.
integrals of the form

∫ i∞

τ
G2k1(τ1)G(2k2; τ1)dτ1, k1, k2 ≥ 0. (4.74)

A complication that arises is that, in contrast to single Eisenstein integrals, not every
linear combination of double Eisenstein integrals will occur as an A-elliptic (or B-elliptic
for that matter) multiple zeta value. More precisely, the linear combinations of iterated
Eisenstein integrals, which can possibly occur as elliptic multiple zeta values are intimately
connected to relations in a certain Lie algebra derivations. This will be described in detail
in Chapter 5.

4.8 A binomial determinant

The proof of Theorem 4.5.1 depends on the invertibility of a certain family of matrices
(Mn)n≥0, the entries of which are given by binomial coefficients. We now complete the
proof of Theorem 4.5.1 by computing the determinant of the aforementioned binomial
matrices explicitly.
Let n be a non-negative integer and consider the matrix Mn = (mi,j)0≤i,j≤n with

mi,j =
(

2j + 1
i

)
− δ2j+1,i, (4.75)

where δ denotes the Kronecker delta. This is precisely the matrix given in (4.64), on whose
invertibility the proof of Theorem 4.5.1 relied.

Proposition 4.8.1. We have

det(Mn) = (2n+ 1)!! = 1 · 3 · 5 . . . · (2n+ 1). (4.76)

In particular, Mn is invertible for every n.

The idea of the proof of Proposition 4.8.1 is to find a suitable LU-decomposition for Mn.
We first need a lemma about binomial coefficients.

Lemma 4.8.2. For all a, b ≥ 0, we have
(
a

b

)
=

b∑

k=0

(
a− b+ k

k

)(
a− b+ 1

a− 2b+ 2k + 1

)
. (4.77)

Proof: We first assume that b ≤ a/2. In that case, the right hand side is equal to
(
a− b+ 1
a− 2b+ 1

)
3F2

[
a−b+1, −b/2+1/2, −b/2

a/2−b+1, a/2−b+3/2
; 1
]
, (4.78)
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where

3F2
[ α1, α2, α3

ρ1, ρ2
; z
]

:=
∞∑

k=0

(α1)k(α2)k(α3)k
k!(ρ1)k(ρ2)k

zk (4.79)

is a hypergeometric function (cf. [4], Chapter II). Here, (m)k := m(m+ 1) . . . (m+ k − 1)
denotes the Pochhammer symbol. Now if b is even, we can apply Saalschütz’s Theorem

3F2

[
a, b, −n
c, a+b−c+1−n ; 1

]
= (c− a)n(c− b)n

(c)n(c− a− b)n
, (4.80)

(cf. [4], Section 2.2). Hence, (4.78) is equal to
(
a− b+ 1
a− 2b+ 1

)
(−a/2)b/2(a/2− b/2 + 1/2)b/2

(a/2− b+ 1)b/2(−a/2 + b/2− 1/2)b/2
=
(
a

b

)
. (4.81)

In the case where b is odd, we can apply Saalschütz’s Theorem after interchanging −b/2
and −b/2 + 1/2 in the argument of 3F2 in (4.78) above, and get the result. If b > a/2,
then the same argument as above works, with b replaced by a− b throughout.

Now consider the matrices Ln = (li,j)0≤i,j≤n, Un = (ui,j)0≤i,j≤n with

li,j =
(

j

i− j

)
, ui,j =





1, i = 0

(
2j − i
i− 1

)
2j + 1
i

, 0 < i < 2j + 1

0, i ≥ 2j + 1.

(4.82)

Note that Ln is a lower triangular matrix with determinant 1, while Un is an upper
triangular matrix with determinant (2n+ 1)!!. Hence, Proposition 4.8.1 follows from

Lemma 4.8.3. For every n, we have

Mn = LnUn. (4.83)

Proof: We see from (4.82) that the assertion of the lemma is equivalent to
(

2j + 1
i

)
− δ2j+1,i =

n∑

k=0
li,kuk,j , (4.84)

for all i, j such that 0 ≤ i, j ≤ n. For i ≥ 2j + 1, both sides of (4.84) are evidently equal
to zero. If i = 0, then, since l0,k = δ0,k, both sides of (4.84) are equal to 1.
It remains to prove (4.84) for i, j such that 0 < i < 2j + 1 ≤ n. In this case, we have
li,0 = 0, and since

( k
i−k
)
vanishes for k > i, we need to prove that

(
2j + 1
i

)
− δ2j+1,i =

i∑

k=1

(
k

i− k

)(
2j − k
k − 1

)
2j + 1
k

. (4.85)
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We now rewrite the right hand side of (4.85) as

i∑

k=1

(
k

i− k

)(
2j − k
k − 1

)
2j + 1
k

=
i∑

k=0

(
k

i− k

)(
2j + 1− k

k

)
2j + 1

2j + 1− k

=
i∑

k=0

(
2j + 1− k
i− k

)(
2j + 1− i

2k − i

)
2j + 1

2j + 1− k

=
i∑

k=0

(
2j + 1− k
2j + 1− i

)(
2j + 1− i

2j − 2k + 1

)
2j + 1

2j + 1− k

=
i∑

k=0

(
2j − k
2j − i

)(
2j + 1− i

2j − 2k + 1

)
2j + 1

2j + 1− i (4.86)

=
i∑

k=0

(
2j − k
i− k

)(
2j + 1− i

2j − 2k + 1

)
2j + 1

2j + 1− i

=
i∑

k=0

(
2j − i+ k

k

)(
2j + 1− i

2j − 2i+ 2k + 1

)
2j + 1

2j + 1− i ,

where we freely used standard properties of binomial coefficients. Applying Lemma 4.8.2
with a = 2j and b = i to the last line of (4.86), we finally obtain (4.85), as desired.
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Chapter 5

Elliptic multiple zeta values and
iterated Eisenstein integrals

In the last chapter, we have made use of the length filtration to study the space of elliptic
multiple zeta values of a fixed length. This led to the computation of the dimension of the
space of A-elliptic double zeta values (Theorem 4.6.1). As we have seen, an important tool
was the differential equation satisfied by A-elliptic multiple zeta values (Theorem 3.3.1),
which relates them to (iterated) integrals of Eisenstein series.
In this section, we study elliptic multiple zeta values from a more “global” point of view,
that is, we do not only consider elliptic multiple zeta values of a fixed length, but all elliptic
multiple zeta values at the same time. The crucial tool to use is again the differential
equation for elliptic multiple zeta values, but studied from a slightly different point of view,
which elucidates its relation to a certain Lie algebra ugeom of special derivations on the
fundamental Lie algebra of a once-punctured elliptic curve, which have been introduced
in a slightly different version in [60, 75], and have since then re-appeared in work of
many people [7, 22, 24, 31, 45, 61]. More precisely, their differential equation shows that
elliptic multiple zeta values are linear combinations of iterated integrals of Eisenstein series
[20, 57], whose coefficients are controlled by ugeom. The classical multiple zeta values make
an appearance as boundary conditions for said differential equation. To summarize this
chapter, we make a first step towards a complete algebraic description of elliptic multiple
zeta values in terms of classical multiple zeta values and iterated Eisenstein integrals.

5.1 Preliminaries

In the previous sections, the generating series of A-elliptic and B-elliptic multiple zeta
values A(τ) and B(τ) were series in the non-commutative formal variables x0 and x1. In
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this chapter, however, we will make a global change of variables

a := 2πix0, b := (2πi)−1x1. (5.1)

and will rewrite A(τ) and B(τ) as series in a and b. Although it is merely a straightfor-
ward substitution, this change of variables will have the effect of eliminating cumbersome
powers of 2πi, and will elucidate the structure of elliptic multiple zeta values. For similar
reasons, in this chapter we will work with the Hecke-normalized Eisenstein series E2k(τ) =
(2k−1)!
2(2πi)2kG2k(τ), instead of the Eisenstein series G2k(τ) = ∑

(m,n)∈Z2\{(0,0)}
1

(m+nτ)k .
We begin with some technical preliminaries on iterated Eisenstein integrals and the above-
mentioned Lie algebra of special derivations.

5.1.1 Iterated Eisenstein integrals
The study of iterated integrals of modular forms has been initiated by Manin [57], and
was extended further by Brown [20]. In this section, we follow [20], Section 4, with slight
modifications.
For k ≥ 1, let

E2k(τ) := (2k − 1)!
2(2πi)2k

∑

(m,n)∈Z2\{(0,0)}

1
(m+ nτ)2k (5.2)

denote the Eisenstein series of weight 2k. It has a Fourier expansion in q = e2πiτ , which
is given by

E2k(τ) = −B2k
4k +

∑

n≥1
σ2k−1(n)qn, σm(n) =

∑

d|n
dm. (5.3)

Note that the multiplication by (2k−1)!
2(2πi)2k has the effect that the Fourier coefficients of E2k

are rational numbers. We also set E0 := −1. Associated to E2k, we have the differential
one-form

E2k(τ) := 2πi · E2k(τ)dτ = E2k(τ)dq
q
. (5.4)

Viewed as a meromorphic differential one-form in the variable q, it is defined over Q.
Now let e := {e2k}k≥0 be a set of non-commuting variables, and consider the generating
series

ωEis :=
∑

k≥0
E2k(τ) · e2k ∈ Ω1(H)⊗̂Q〈〈e〉〉, H = {z ∈ C | Im(z) > 0} (5.5)

of differential one-forms of Eisenstein series. We are interested in solutions to the linear
differential equation

df = −ωEis · f, f : H→ C〈〈e〉〉. (5.6)

Since for k ≥ 1, we have limτ→i∞E2k(τ) = −B2k
4k , the differential equation (5.6) has a

regular singular point at i∞, with residue

res∞ := e0 +
∑

k≥0

B2k
4k · e2k. (5.7)
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Using Picard iteration (cf. e.g. [46], Section 2), it follows that for fixed ρ ∈ H, the series1

exp
[∫ ρ

τ
ωEis

]
:= 1 +

∑

k≥1

∫ ρ

τ
ωkEis (5.8)

satisfies (5.6). Furthermore, we have

exp
[∫ ρ

τ
ωEis

]
∼ exp(−ρ · res∞), for ρ→ i∞ (5.9)

Hence, by Proposition A.2.6, the limit

E(τ) := lim
ρ→i∞

exp
[∫ ρ

τ
ωEis

]
exp(ρ · res∞) (5.10)

exists, and is also a solution to (5.6).

Definition 5.1.1. For a multi-index 2k = (2k1, . . . , 2kn) ∈ (2Z≥0)n, define the regularized
iterated Eisenstein integral

E(2k; τ) ∈ O(H) (5.11)

to be the coefficient of e2k := e2k1 . . . e2kn in E(τ).
Furthermore, denote by 〈E〉Q the Q-vector space spanned by the iterated Eisenstein inte-
grals.

Proposition 5.1.2. The Q-vector space 〈E〉Q is a Q-algebra.

Proof: It follows from Proposition A.2.3 that the series

exp
[∫ ρ

τ
ωEis

]
(5.12)

is group-like. Therefore, also E(τ) as defined in 5.10 is group-like, and by Corollary A.1.8
the Q-vector space spanned by its coefficients, which is just 〈E〉Q is a Q-algebra.

In order to describe the structure of 〈E〉Q, recall the definition of the tensor Q-algebra
T (e) on the set e. As a Q-vector space, T (e) is given by the direct sum

T (e) =
⊕

n≥0
〈e〉⊗nQ , 〈e〉Q := SpanQ{e2k | k ≥ 0}, (5.13)

and the multiplication is given by concatenation of tensors. This defines an associative,
unital multiplication law on T (e), thus gives T (e) the structure of a Q-algebra. Moreover,
T (e) is a graded Q-algebra, where elements of 〈e〉⊗nQ have degree n. We will write T (e)n

1Since H is a simply connected Riemann surface and ωEis is a holomorphic differential one-form,
the iterated integral does not depend on the choice of path from τ to ρ.
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instead of 〈e〉⊗nQ , and we note that T (e)n is finite-dimensional for every n. Denote by
T (e)∨ the graded dual of T (e)

T (e)∨ =
⊕

n≥0
T (e)∨n , (5.14)

i.e. the direct sum of the duals of the degree n components of T (e). The Q-vector space
T (e)∨ carries a natural structure of a graded Q-algebra, whose product is given by the
shuffle product. In fact, with the notation of Appendix A.1, we have T (e)∨ ∼= Q〈e〉.
Elements of T (e)∨ will be written as linear combinations of dual elements e∨2k1

. . . e∨2kn ,
where e∨2k(e2l) = δk,l and likewise for products of e∨2ki ’s.

Theorem 5.1.3. Let K ⊂ C be a subfield. Then 〈E〉K is a free shuffle algebra. More
precisely, the morphism

Ψ : 〈E〉K → T (e)∨ ⊗K
E(2k; τ) 7→ e∨2k1 . . . e

∨
2kn , (5.15)

is a well-defined isomorphism of K-algebras. In particular, 〈E〉K is graded for the length
of iterated integrals:

〈E〉K =
⊕

n≥0
Ln(〈e〉K), (5.16)

where, for n ≥ 0, we set Ln(〈e〉K) := SpanK{E(2k1, . . . , 2kn; τ) | ki ≥ 0}.

Proof: First, the morphism Ψ is well-defined, since the E(2k; τ) are linearly independent
over C (and hence over every subfield of C) by [58], and Ψ is a homomorphism ofK-algebras
since both sides are endowed with the shuffle product. Moreover, since the elements
e∨2k1

. . . e∨2kn for ki ≥ 0 form a basis of T (e)∨ (by the universal property of T (e)), it follows
that Ψ is an isomorphism of K-algebras.

We conclude this section with some closed formulas for iterated Eisenstein integrals in
lengths one and two, which are taken from [20], Example 4.10,.

Example 5.1.4. For k ≥ 0, write

E∞2k = −B2k
4k , E0

2k(τ) =





∑

n≥1
σ2k−1(n)qn k > 0

0 k = 0,
(5.17)

and let E∞2k = 2πi · E∞2k(τ)dτ and E0
2k = 2πi · E0

2k(τ)dτ be the associated differential
one-forms. Then, we have

E(2k; τ) = lim
ρ→i∞

[
− E∞2k · ρ+

∫ ρ

τ
E2k(τ1)

]
= −E∞2k · τ +

∫ i∞

τ
E0

2k(τ1). (5.18)
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and

E(2k1, 2k2; τ) =
∫ i∞

τ
E2k1(τ1)E0

2k2(τ2)−
∫ i∞

τ
E∞2k2(τ1)E0

2k1(τ2)

−
∫ i∞

τ
E0

2k1(τ1)
∫ τ

0
E∞2k2(τ1) +

∫ τ

0
E∞2k2(τ1)E∞2k1(τ2). (5.19)

Remark 5.1.5. In general, E(2k1, . . . , 2kn; τ) will have an expansion in q and log(q) :=
2πiτ with rational coefficients. More precisely,

E(2k1, . . . , 2kn; τ) ∈ Q[[q]]⊗Q Q[log(q)] (5.20)

for all ki ≥ 0.

5.1.2 Special derivations
In this section, we study a family derivations ε2k on a free Lie algebra on two genera-
tors. These derivations generate a Lie algebra ugeom, which first occurred in a slightly
different form in work of Nakamura [60] and Tsunogai [75] on Galois representations of
once-punctured elliptic curves. More recently, the Lie algebra ugeom and various versions
thereof re-appeared in a variety of articles [7, 22, 24, 31, 45, 61, 69]. We will freely use
some basic notions from the theory of Lie algebras, which are collected in Appendix A.
Let L be the free Lie algebra on the set {a, b} [71]. By definition, every derivation on L is
uniquely determined by its values on a and b.

Definition 5.1.6. For every k ≥ 0, define a derivation ε2k : L → L by

ε2k(a) = ad2k(a)(b) (5.21)

ε2k(b) =
∑

0≤n<k
(−1)n[adn(a)(b), ad2k−1−n(a)(b)]. (5.22)

Define ugeom ⊂ Der(L) to be the Lie subalgebra generated by the ε2k.

The Lie algebra L is bi-graded by giving a bi-degree (1, 0) and b bi-degree (0, 1). We
denote by L(m,n) the homogeneous component of bi-degree (m,n).

Proposition 5.1.7. The derivations ε2k are uniquely determined by the following three
conditions:

(i) ε2k(a) = ad2k(a)(b)

(ii) ε2k([a, b]) = 0

(iii) ε2k is homogeneous of bi-degree (2k − 1, 1)
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Proof: That the derivations ε2k satisfy i) and iii) follows directly from their definition,
while property ii) is proved in [61], Section 3. Conversely, assume that there exists a
derivation δ2k satisfying i)-iii). In particular, we have

0 = δ2k([a, b]) = [δ2k(a), b] + [a, δ2k(b)], (5.23)

thus [a, δ2k(b)] is uniquely determined by δ2k(a). Now δ2k(a) equals ε2k(a) by assumption,
and it follows that [a, δ2k(b)] = [a, ε2k(b)]. Since L is free, the commutator of a in L is
given by multiples of a, and therefore

δ2k(b) = ε2k(b) + λ · a, (5.24)

for some λ ∈ Q. By homogeneity of δ2k, we have λ = 0, and therefore, ε2k(b) = δ2k(b).
Thus, the derivations ε2k and δ2k agree on a and on b, hence they are identically equal.

Corollary 5.1.8. The map “evaluation at a”

ψa : ugeom → L
δ 7→ δ(a), (5.25)

is injective. On the other hand, the map “evaluation at b”

ψb : ugeom → L
δ 7→ δ(b), (5.26)

has a one-dimensional kernel given by Q · ε0.

Proof: The Lie bracket of two homogeneous derivations of bi-degrees (k, l) and (k′, l′) is
again homogeneous of bi-degree (k + k′, l + l′) and maps the commutator [a, b] to zero.
By Proposition 5.1.7, it follows that every element of ugeom is uniquely determined by its
value on a, which proves injectivity of (5.25). On the other hand, the equality δ(b) = 0
combined with the equality

0 = δ([a, b]) = [δ(a), b] + [a, δ(b)], (5.27)

implies [δ(a), b] = 0. Since L is the free Lie algebra on a and b, it follows that δ(a) ∈ Q · b,
which, by homogeneity of δ, is only possible if δ = λε0 for λ ∈ Q.

The preceding proposition implies in particular that the derivations ε2k are uniquely de-
termined by their action on a.
Later on, we will also need a variant ε̃2k of ε2k, defined by

ε̃2k =





2
(2k − 2)!ε2k k > 0

−ε0 k = 0.

(5.28)
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5.2 The differential equation for the elliptic KZB associator

The elliptic KZB associator satisfies a differential equation, which relates it to iterated
Eisenstein integrals the derivations ε̃2k of the last section. The results of this section are
essentially due to Enriquez [31], however, our presentation slightly differs from [31].
Consider the differential one-form

ωgeom
Eis :=

∑

k≥0
E2k(τ) · ε̃2k, (5.29)

with values in the Lie algebra ugeom. Let U(ugeom)∧ be the completion (with respect
to the lower central series) of the universal enveloping algebra with complex coefficients.
Elements of U(ugeom)∧ are formal series with complex coefficients of the monomials

ε̃2k := ε̃2k1 ◦ . . . ◦ ε̃2kn ∈ U(ugeom), 2k = (2k1, . . . , 2kn) ∈ (2Z≥0)n. (5.30)

For a function
f : H→ U(ugeom)∧, (5.31)

we consider the differential equation

df = −ωgeom
Eis · f (5.32)

As in Section 5.1.1, one can show that the limit

g(τ) := lim
ρ→i∞

exp
[∫ ρ

τ
ωEis

]
exp(ρ · resgeom

∞ ), resgeom
∞ := ε̃0 +

∑

k≥1

B2k
4k · ε̃2k (5.33)

exists, and that (5.33) satisfies (5.32), with the boundary condition g(τ) ∼ exp(τ · resgeom
∞ )

as τ → i∞. Since every ε̃2k is a derivation of the free Lie algebra L, it follows that g(τ) is
an automorphism of C〈〈a, b〉〉. Moreover, by virtue of Proposition A.2.3, we even have the
following result.

Proposition 5.2.1. There exists a derivation r(τ) ∈ Der(L̂) of the completed Lie algebra
L̂, such that

g(τ) = exp(r(τ)). (5.34)

In other words, g(τ) is group-like.

The series g(τ) can be written down explicitly using the iterated Eisenstein integrals
E(2k; τ) (5.11) as

g(τ) =
∑

2k
E(2k; τ)ε̃2k, (5.35)

where the sum is over all multi-indices 2k ∈ (2Z≥)n, for all n ≥ 0.
The following theorem of Enriquez draws a connection between iterated Eisenstein inte-
grals, the derivations ε̃2k and elliptic multiple zeta values.
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Theorem 5.2.2 (Enriquez). The generating series A(τ) and B(τ) of A-elliptic resp. B-
elliptic multiple zeta values satisfy the differential equation

dh(τ) = −ωgeom
Eis · h(τ), (5.36)

with boundary conditions

A(τ) ∼ eπitΦ(ỹ, t)e2πiỹΦ(ỹ, t)−1 (5.37)

B(τ) ∼ Φ(−ỹ − t, t)eaeỹτΦ(ỹ, t)−1, (5.38)

as τ → i∞. Here, the variables ỹ and t are given by

ỹ = − ad(a)
exp(ad(a))− 1(b), t = −[a, b]. (5.39)

We note that our conventions are slightly different from Enriquez’s. More precisely,
Enriquez uses variables x0, x1 and sets t = −[x0, x1] and ỹ = − ad(x0)

ead(x1)−1(x1). On the
other hand, we use variables a := 2πix0 and b := (2πi)−1x1, and set t = −[a, b] and
ỹ = − ad(a)

ead(a)−1(b).

Proof: See [32], 5.2 (see also [31], Proposition 6.3).

Solving this differential equation using Picard iteration, one obtains the following explicit
formula for A(τ) and B(τ).

Corollary 5.2.3. We have the equalities

A(τ) = g(τ)(A∞), B(τ) = g(τ)(B∞) (5.40)

where A∞ and B∞ are given by

A∞ = eπitΦ(ỹ, t)e2πiỹΦ(ỹ, t)−1 (5.41)

B∞ = Φ(−ỹ − t, t)eaΦ(ỹ, t)−1. (5.42)

Proof: It is enough to show that g(τ)(A∞) and g(τ)(B∞)

(i) satisfy the differential equation 5.36, and

(ii) have the correct asymptotic behavior 5.37, 5.38.

i) follows from the definition of g(τ) and the discussion in Section A.2.2. For the asymptotic
behavior, first note that g(τ) ∼ exp(τ · resgeom

∞ ), where resgeom
∞ = ε̃0 +∑

k≥1
B2k
4k ε̃2k. It is

proved in [24] (proof of Proposition 4.9) that resgeom
∞ annihilates both ỹ and t. On the

other hand, by Lemma 4.15 of [24] we have

exp(τ · resgeom
∞ )(ea) = eaeỹτ . (5.43)
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From this, one deduces that

exp(τ · resgeom
∞ )(A∞) = A∞ (5.44)

exp(τ · resgeom
∞ )(B∞) = Φ(−ỹ − t, 2πi)eaeỹτΦ(ỹ, t)−1 (5.45)

(cf. [31], proof of Proposition 6.3), which proves (ii).

5.3 The canonical embeddings

In this section, we employ the differential equation satisfied by the series A(τ) and B(τ)
to deduce results about the structure of the Q-algebras EZA and EZB of A-elliptic resp.
B-elliptic multiple zeta values.
In fact, we will replace EZA and EZB by the slightly modified spaces

EZA = SpanQ{(2πi)−d(w)A(τ)w |w ∈ 〈x0, x1〉} (5.46)

EZB = SpanQ{(2πi)−d(w)B(τ)w |w ∈ 〈x0, x1〉}, (5.47)

where d(w) = degx0(w) − degx1(w). This convention is chosen in particular to remove
powers of 2πi from the denominators of A∞ and B∞. A similar proof as in Proposition
3.4.7, using that the series A(τ)w and B(τ)w are group-like, shows that EZA and EZB are
in fact Q-algebras.
A central role will be played by the universal enveloping algebra U(ugeom) of the Lie algebra
ugeom. Since U(ugeom) is generated, as a (non-commutative) Q-algebra, by the elements
ε̃2k, we get a natural surjection

T (e)→ U(ugeom)

e2k 7→ ε̃2k, (5.48)

which induces a dual embedding of Q-algebras

U(ugeom)∨ ↪→ T (e)∨ ∼= 〈E〉Q, (5.49)

where the last isomorphism comes from Theorem 5.1.3.
There is an equivalent way of looking at the embedding (5.49). Namely, the element g(τ)
of the previous section yields a morphism

U(ugeom)∨ → 〈E〉Q
ε∨2k 7→ ε∨2k(g(τ))), (5.50)

which is clearly dual to the natural surjection (5.48), hence is precisely (5.49).
The following theorem gives a relation between U(ugeom)∨ and elliptic multiple zeta values.
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Theorem 5.3.1. We have canonical embeddings of Q-algebras

ιA : EZA
↪→ U(ugeom)∨ ⊗Z[2πi] ↪→ T (e)∨ ⊗Z[2πi] (5.51)

ιB : EZB
↪→ U(ugeom)∨ ⊗Z ↪→ T (e)∨ ⊗Z, (5.52)

where the algebras EZA
, EZB have been defined in (5.46) and (5.47).

Proof: The proof for EZA is almost identical to the one for EZB. By definition, EZA

is linearly spanned by the coefficients of A(τ). On the other hand, by Corollary 5.2.3,
we have A(τ) = g(τ)(A∞). The coefficients of A∞ are contained in Z[2πi], which follows
immediately from the explicit formula (5.41). From the injectivity of the morphism (5.49)
and the ensuing discussion concerning g(τ), we see that the coefficients of g(τ) (of elements
ε2k) span a Q-subalgebra of 〈E〉Q, which is naturally isomorphic to U(ugeom)∨. It follows
that the coefficients of g(τ)(A∞), which are given by Z[2πi]-linear combinations of iterated
Eisenstein integrals span a Q-subalgebra of 〈E〉Q ⊗ Z[2πi], which can be embedded into
U(ugeom)∨ ⊗Z[2πi]. This gives the morphism

ιA : EZA
↪→ U(ugeom)∨ ⊗Z[2πi] ↪→ 〈E〉Q ⊗Z[2πi]. (5.53)

The construction of the morphism ιB is identically the same, upon replacing A∞ by B∞,
and using that B(τ) = g(τ)(B∞) and that EZB is theQ-algebra spanned by the coefficients
of B(τ) (the reason why we can replace Z[2πi] with Z in the definition of ιB is that the
coefficients of B∞ are contained in Z).

Remark 5.3.2. (i) It is known that the Lie algebra ugeom is not freely generated by the
derivations ε2k, and that non-trivial relations between iterated Lie brackets of the ε2k

are closely related to cusp forms for SL2(Z) [61, 45]. As a consequence, U(ugeom)∨

is embedded into T (e)∨ as a proper subalgebra, hence Theorem 5.3.1 restricts the
possible linear combinations of iterated Eisenstein integrals, which can possibly
occur as elliptic multiple zeta values. In a slightly different way, this phenomenon
was described also in [14].

(ii) The graded dual U(ugeom)∨ of the universal enveloping algebra of ugeom carries a
natural coproduct ∆. Under the embedding (5.49), it corresponds to the deconcate-
nation coproduct on T (e)∨, given by

∆(e∨2k1 . . . e
∨
2kn) =

n∑

i=0
e∨2k1 . . . e

∨
2ki ⊗ e∨2ki+1 . . . e

∨
2kn . (5.54)

The appearance of the deconcatenation coproduct in the context of elliptic mul-
tiple zeta values establishes a parallel between elliptic multiple zeta values and
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motivic multiple zeta values [16, 17, 40]. Indeed, the Q-algebra Zm/〈ζm(2)〉 of mo-
tivic multiple zeta values (modulo the ideal generated by ζm(2)) has a structure of
Hopf algebra, whose coproduct is given by the Goncharov coproduct. It is known
[16, 17] that under a suitable isomorphism φ : Zm/〈ζm(2)〉 ∼= Q〈f3, f5, f7, . . .〉, the
Goncharov coproduct corresponds to the deconcatenation coproduct on the shuffle
algebra Q〈f3, f5, f7, . . .〉.

5.4 Length decomposition of elliptic multiple zeta values

We would like to understand better the images of the morphisms ιA and ιB, in particular,
how the notion of length of elliptic multiple zeta values relates to the length of iterated
Eisenstein integrals. The following proposition shows that the length n of an elliptic
multiple zeta value gives an upper bound for the length of iterated Eisenstein integrals
that can appear in the decomposition, and that the bound is in fact n − 1 for A-elliptic
multiple zeta values. Since iterated Eisenstein integrals of different length are linearly
independent, the length expansion gives an useful way of decomposing an elliptic multiple
zeta value into separate objects, which can be studied individually. This study will be the
subject of later subsections.

Proposition 5.4.1. For every n ≥ 0, the Q-algebra homomorphisms ιA and ιB restrict
to Q-linear maps

Ln(EZA) ↪→
⊕

k≥0
Lk(〈E〉Q)⊗Z[2πi]

A(τ)w 7→ ((gk(τ)A∞)w)k=0,...,n−1, (5.55)

and

Ln(EZB) ↪→
⊕

k≥0
Lk(〈E〉Q)⊗Z

B(τ)w 7→ ((gk(τ)B∞)w)k=0,...,n. (5.56)

Furthermore, (gn(τ)A∞)w = 0.

We will call the expansions

((gk(τ)A∞)w)k=0,...,n−1, ((gk(τ)B∞)w)k=0,...,n (5.57)

the length decomposition of A(τ)w and B(τ)w respectively.

Proof: Let w ∈ 〈a, b〉 be a word with degb(w) = n, so that2

A(τ)w ∈ Ln(EZA), B(τ)w ∈ Ln(EZB). (5.58)
2Previously, the length was defined for a word w on the alphabet 〈x0, x1〉 to be the x1-degree

of w. However, since b = x1, there is no possible confusion.
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By definition, ε2k is homogeneous of b-degree equal to one, i.e. application of ε2k increases
the number of occurrences of the letter b by one. Together with Theorem 5.2.2, this implies
that

A(τ)w =
n∑

k=0
(gk(τ)A∞)w, B(τ)w =

n∑

k=0
(gk(τ)B∞)w. (5.59)

Now (gk(τ)A∞)w, (gk(τ)B∞)w ∈ LkZ[2πi]〈G〉, and since by Theorem 5.1.3 we have the
direct sum decomposition

Z[(2πi)−1]〈G〉 =
⊕

k≥0
Lk(Z[(2πi)−1])〈G〉, (5.60)

it follows that (5.55) and (5.56) are injections.
It remains to show that (gn(τ)A∞)w = 0. For this, recall that

A∞ = eπitΦ(ỹ, t)e2πiỹΦ(ỹ, t)−1. (5.61)

Both t = −[a, b] and ỹ = − ad(a)
exp(ad(a))−1(b) are homogeneous of b-degree equal to one.

Therefore, every term in A∞ is of b-degree ≥ 1, and since ε2k is homogeneous of degree
one in b, we have for all k1, . . . , kn ≥ 0 that (ε2k1 ◦ . . . ◦ ε2kn)(A∞) consists only of words
of b-degrees ≥ n+ 1. In particular, it follows that

(gn(τ)A∞)w = 0. (5.62)

5.4.1 The lowest length component
In this section, we study the coefficients of the series

A∞ = eπitΦ(ỹ, t)e2πiỹΦ(ỹ, t)−1 (5.63)

B∞ = Φ(−ỹ − t, t)eaΦ(ỹ, t)−1, (5.64)

Since the coefficients of the Drinfeld associator are given by Q-linear combinations of mul-
tiple zeta values, every coefficient of A∞ is contained in Z[2πi] and that every coefficient
of B∞ is contained in Z. We denote by

α : Q〈a, b〉 → Z[2πi] (5.65)

β : Q〈a, b〉 → Z (5.66)

the Q-linear morphisms, which map a word w onto its coefficient in A∞, resp. its coefficient
in B∞.

Theorem 5.4.2. (i) The image of the morphism α equals Q + 2πiZ[2πi].
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(ii) The morphism β is surjective.

We need two lemmas first.

Lemma 5.4.3. Let k = (k1, . . . , kn) be a multi-index with ki ≥ 1 and k1 ≥ 2, and consider
the word

wk = bk1a . . . bkna. (5.67)

Assume that some word w′ ∈ 〈b, t〉 contains wk with a non-trivial coefficient (this means
that in the expansion of w′ in a, b, the word wk appears as a non-trivial summand). Then

w′ = x
k′1
1 t . . . x

k′n
1 t (5.68)

for some k′i ≥ 1, k′1 ≥ 2, with (k′1, . . . , k′n) � (k1, . . . , kn) where � denotes the reverse
lexicographical ordering.

Proof: Since wk ends with a and begins with two successive b’s, it is clear that w′ must
begin with b and end with t. Also, every a in wk must team up with either its left or
its right neighboring b to arise from a commutator [a, b]. There are four possibilities for
the two successive a’s in the i-th and (i+ 1)-th position to team up with neighboring b’s,
namely

left/left k′i+1 = ki+1 (5.69)

left/right k′i+1 = ki+1 + 1 (5.70)

right/left k′i+1 = ki+1 − 1 (5.71)

right/right k′i+1 = ki+1. (5.72)

Since wk ends with a, the last a in the n-th position must team up with its left neighbor b,
which gives k′n = kn or k′n = kn−1. Continuing in this way, we see that a word bk′1t . . . bk′nt
can contain the word wk, only if (k′1, . . . , k′n) � (k1, . . . , kn) in the reverse lexicographical
ordering �.

The second result we need is the following

Lemma 5.4.4. The coefficient of wk in the series Φ(b, t) equals

(−1)nζ(k1, . . . , kn) +
∑

k′≺k
λk′ζ(k′), (5.73)

where λk′ ∈ Q. Likewise, the coefficient of wk in the series Φ(b, t)−1 equals

(−1)n+1ζ(k1, . . . , kn) +
∑

k′≺k
λk′ζ(k′) mod (Z2)k, (5.74)

where λk ∈ Q and (Z2)k ⊂ Zk denotes the vector subspace of non-trivial products of weight
k of multiple zeta values.
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Proof: First, it is clear that

(Φ(b, t))wk =
∑

w′
(Φ(b, t))w′ , (5.75)

where the sum is over all words w′ ∈ 〈b, t〉, which contain wk as a summand (via the
expansion t = ba− ab). By Lemma 5.4.3, it thus follows that

(Φ(b, t))wk =
∑

k′�k
(Φ(b, t))w′

k′
, (5.76)

for multi-indices k′ = (k′1, . . . , k′n). We have seen in Chapter 1.3 that the coefficient of w′
k′

in Φ(b, t) is equal to (−1)nζ(k′1, . . . , k′n), thus (5.73) follows. A similar argument shows
that

(Φ(b, t)−1)wk =
∑

k′�k
(Φ(b, t)−1)w′

k′
. (5.77)

We have

Φ(b, t)−1
w′
k′
≡ −(−1)nζ(k′1, . . . , k′n) = (−1)n+1ζ(k′1, . . . , k′n) mod (Z2)k, (5.78)

which can be seen by comparing the coefficients of w′
k′ on both sides of the equation

Φ(b, t)Φ(b, t)−1 = 1, and (5.74) follows.

Proof: (of Theorem 5.4.2) We first prove (i), i.e. that the image of α equals Q ⊕ 2πiZ.
Given a word w ∈ 〈a, b〉, we have by definition

α(w) = (A∞)w = (eπitΦ(ỹ, t)e2πiỹΦ(ỹ, t)−1)w, (5.79)

where ỹ = − ad(a)
ead(a)−1(b) = −∑n≥0

Bn
n! adn(a)(b) and t = − ad(a)(b). It is easy to see

that α(1w) = 1 (where 1w denotes the empty word) and that α(bn) = (−2πi)n
n! . There-

fore, it remains to prove that for every multiple zeta value ζ(k1, . . . , kn), the element
2πiζ(k1, . . . , kn) is in the image of the morphism α.
To this end, for a multi-index k = (k1, . . . , kn) ∈ Zn≥1 of weight k = k1 + . . .+kn and depth
n, we set wk = b · bkna . . . bk1a. For integers m,n ≥ 0, let

Z≤n−1
≤m :=

∑

0≤k≤m
Dn−1(Zk) +

∑

0≤k≤m
Dn(Zk) ∩ Z2

>0 (5.80)

be the Q-span of the multiple zeta values of weight at most m and depth at most n − 1
and of all products of multiple zeta values, such that the product has depth at most n
and weight at most k. We claim that

(A∞)w = −2πi(−1)k1+...+kn−nζ(k1, . . . , kn) + zk,n, (5.81)

where zk,n ∈ Z≤n−1
≤k . By a straightforward double induction on weight and depth, we see

that this claim implies (i).
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To prove the claim, first note that

(A∞)wk =
∑

wk=pqrs
(eπit)p(Φ(ỹ, t))q(e2πiỹ)r(Φ(ỹ, t)−1)s. (5.82)

No word occurring in the series eπit can have two consecutive b’s. However, by construction
wk begins with two consecutive b’s, thus the eπit-term in (5.82) does not contribute to the
sum, and we see that

∑

wk=pqrs
(eπit)p(Φ(ỹ, t))q(e2πiỹ)r(Φ(ỹ, t)−1)s =

∑

wk=qrs
(Φ(ỹ, t))q(e2πiỹ)r(Φ(ỹ, t)−1)s. (5.83)

Now write

A∞ =
∑

wk=qrs
(Φ(ỹ, t))q(e2πiỹ)r(Φ(ỹ, t)−1)s

=
∑

wk=qs
(Φ(ỹ, t))q(Φ(ỹ, t)−1)s

+
∑

wk=qr, r 6=1
(Φ(ỹ, t))q(e2πiỹ)r (5.84)

+
∑

wk=rs, r 6=1
(e2πiỹ)r(Φ(ỹ, t)−1)s

+
∑

wk=qrs, q,r,s6=1
(Φ(ỹ, t))q(e2πiỹ)r(Φ(ỹ, t)−1)s.

Since wk is not the trivial word, the second line vanishes, and the last line is obviously
contained in Zk,n. For the third line, note that for every factorization wk = bc with c

non-trivial the word b has at most n − 1 occurrences of the letter a, and thus (Φ(ỹ, t))b
has depth at most n− 1. Consequently, also the third line is contained in Z≤n−1

≤k . Finally,
the fourth line equals

(−1)k1+...+kn+12πiζ(k1, . . . , kn) +
∑

k′≺k
λk′ζ(k′) +

∑

wk=rs, r 6=1,q
(e2πiỹ)r(Φ(ỹ, t)−1)s

︸ ︷︷ ︸
∈Zk,n

, (5.85)

with λk′ ∈ Q, by Lemma 5.4.4, since ỹ = −b + higher terms. All in all, this proves the
claim, and hence (i).
We now prove ii), i.e. the surjectivity of β. By definition, we have

β(w) = (B∞)w = (Φ(−ỹ − t, t)eaΦ(ỹ, t)−1)w (5.86)

For a multi-index k ∈ Zn≥1 of weight k and depth n, set wk = bkna . . . bk1a · a. We claim
that

(B∞)wk = ζ(k1, . . . , kn) + zk, (5.87)
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where zk ∈ Zm,n, and the surjectivity of B∞ follows from this. In order to prove the claim,
note that

(B∞)wk =
∑

wk=pqr
(Φ(−ỹ − t, t))p(ea)q(Φ(ỹ, t)−1)r

+
∑

wk=pqr, p,q,r 6=1
(Φ(−ỹ − t, t))p(ea)q(Φ(ỹ, t)−1)r

+
∑

wk=qr, q,r 6=1
(ea)q(Φ(ỹ, t)−1)r

+
∑

wk=pq, p,q 6=1
(Φ(−ỹ − t, t))p(ea)q (5.88)

+
∑

wk=pr, p,r 6=1
(Φ(−ỹ − t, t))p(Φ(ỹ, t)−1)r

+ (Φ(−ỹ − t, t))wk + (ea)wk + (Φ(ỹ, t)−1)wk .

Clearly the second and fifth line are contained in Zm,n and the third line vanishes, since
wk starts with b, but the series ea does not contain any b-term. Again by Lemma 5.4.4,
the fourth line is equal to

ζ(k1, . . . , kn) +
∑

k′≺k
λk′ζ(k′) + (Φ(−ỹ − t, t))bkna...bkn (ea)a2︸ ︷︷ ︸

∈Zm,n

, (5.89)

while the last line is again contained in Zm,n. The last fact can be seen as follows: since
wk ends with two a’s, the only words in ỹ and t, which can give rise to wk must end with
ỹ. More precisely, these words are of the form vỹ, where v is a word with at most n − 1
occurrences of the word t, hence the depth of the multiple zeta values occurring can be
at most n − 1, and it follows that both (Φ(−ỹ − t, t))wk and (Φ(ỹ, t)−1)wk are contained
in Zk,n. Finally, it is clear that (ea)wk = 0, since wk contains the letter b. This ends the
proof of Theorem 5.4.2.

5.4.2 The highest length component
In this section, we study the highest length component of the length decomposition. We
first make precise what we mean by “highest length component”.

Definition 5.4.5. Let w ∈ 〈a, b〉 be a word of length n. The highest length component of
A(τ)w, resp. of B(τ)w is

(gn−1(τ)A∞)w, resp. (gn(τ)B∞)w. (5.90)

The following proposition gives an alternative characterization of the highest length com-
ponent.
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Proposition 5.4.6. Let w be a word of length n. We have the equalities

(gn−1(τ)A∞)w = g(τ)(πit+ 2πiỹ)w, (gn(τ)B∞)w = g(τ)(ea)w, (5.91)

Proof: It follows from the definitions of A∞ and B∞ that

A∞ = πit+ 2πiỹ + terms of b-degree ≥ 2 (5.92)

B∞ = ea + terms of b-degree ≥ 1. (5.93)

Since every ε̃2k annihilates t and increases the b-degree (i.e. the length) by one, the
proposition follows.

Definition 5.4.7. Define two Q-vector spaces EZA−geom and EZB−geom by

EZA−geom = SpanQ{(g(τ)(e
t
2 +ỹ))w |w ∈ 〈a, b〉} (5.94)

EZB−geom = SpanQ{(g(τ)(ea))w |w ∈ 〈a, b〉}. (5.95)

Proposition 5.4.8. (i) Both EZA−geom and EZB−geom are Q-algebras.

(ii) The algebra EZA−geom is the algebra generated by the highest length components of
A-elliptic multiple zeta values3. The algebra EZB−geom is the Q-vector space linearly
spanned by the highest length components of B-elliptic multiple zeta values.

Proof: (i) Since g(τ) = exp(r(τ)), where r(τ) is a formal series of derivations of L, it
follows that g(τ) is an automorphism of exp(L̂). By Proposition A.1.9, it follows
that g(τ)(e t2 +ỹ) and g(τ)(ea) are both group-like, therefore the Q-span of their
coefficients each generate a Q-algebra by Corollary A.1.8

(ii) By Proposition 5.4.6, we know that the Q-vector space spanned by the highest
length components of A-elliptic multiple zeta values is spanned by the coefficients
of the series g(τ)(t/2 + ỹ) (recall that we removed the 2πi-prefactors). Since g(τ) is
an automorphism, it follows that

exp(g(τ)(t/2 + ỹ)) = g(τ)(e
t
2 +ỹ), log(g(τ)(e

t
2 +ỹ)) = g(τ)(t/2 + ỹ), (5.96)

and therefore the coefficients of g(τ)(t/2 + ỹ) are algebraic combinations of the
coefficients of g(τ)(e t2 +ỹ) and vice-versa. In particular, the coefficients of the two
series generate the same Q-algebra, namely EZA−geom.

Finally, the statement that EZB−geom is linearly spanned by the highest length
components of B-elliptic multiple zeta values follows directly from Proposition 5.4.6.

3We have chosen to remove the slightly distracting 2πi-prefactors
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Next, we determine the structure of the Q-algebra EZB−geom. To this end, we need the
following

Proposition 5.4.9. We have

AlgQ{r(τ)(a)
∣∣
w
|w ∈ 〈a, b〉} = AlgQ{g(τ)(a)

∣∣
w
|w ∈ 〈a, b〉}, (5.97)

where for a subset S ⊂ O(H), AlgQ S denotes the Q-subalgebra of O(H) generated by S.

Proof: Recall that g(τ) = ∑
n≥0

∑
k1,...,kn≥0 G(2k1, . . . , 2kn; τ)ε2k1 ◦ . . . ◦ ε2kn , and r(τ) =

log(g(τ)). Since the derivation algebra u is graded for the (commutator) length, we can
expand r(τ) in a homogeneous (for the length) basis B of u

r(τ) =
∑

fi∈B
cfifi, (5.98)

where the fi are commutators of the generators ε2k of u, which are homogeneous for the
length .
Now, for n ≥ 0, let

Anr := AlgnQ{r(τ)(a)
∣∣
w
|w ∈ 〈a, b〉, `(w) ≤ n}, (5.99)

Ang := AlgnQ{g(τ)(a)
∣∣
w
|w ∈ 〈a, b〉, `(w) ≤ n}, (5.100)

where `(w) denotes the length (number of occurrences of b) of the word w. It is clearly
enough to prove that Anr = Ang for all n ≥ 0.
To this end, we use induction on n ≥ 0. For n = 0, the statement is clear: the only words
w ∈ 〈a, b〉 with `(w) = 0 are a and the empty word. Since r(τ)(a) contains neither, A0

r is
the Q-algebra generated by the empty set, which is Q (recall that the empty product is
1 ∈ Q by definition). On the other hand,

g(τ)(a) =
∞∑

k=0

1
k!r(τ)k(a) = a+ r(τ)(a) + 1

2r(τ)2(a) + . . . , (5.101)

and since g(τ)(a)
∣∣
a

= 1, we have Alg0
g = Q as well.

Now assume that for some n ≥ 1, we have Algn−1
r = Algn−1

g , and let w be a word of length
n. From (5.101), we see that (using that a

∣∣
w

= 0, since `(w) ≥ 1)

g(τ)(a)
∣∣
w

= r(τ)(a)
∣∣
w

+
∞∑

k=2

1
k!r(τ)k(a)

∣∣
w
. (5.102)

We claim that r(τ)k(a)
∣∣
w
∈ Algn−1

r for every k ≥ 2. In order to show the claim we proceed
as follows. First, it is clear that

r(τ)k(a)
∣∣
w

=
∑

fi1 ,...,fik∈B

[
cfi1 · . . . · cfik (fi1 ◦ . . . ◦ fik)(a)

]∣∣
w
. (5.103)
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Letting c`(fi) be the commutator length of fi, we have c`(fi) = `(fi(a)), since every
derivation ε2k is homogeneous of length one, i.e. increases the number of b’s by one (thus
a commutator of ε2k’s increases the number of b’s by its commutator length). Using this,
we can make (5.103) more precise:

r(τ)k(a)
∣∣
w

=
∑

c`(fi1 )+...c`(fik )=n

[
cfi1 · . . . · cfik (fi1 ◦ . . . ◦ fik)(a)

]∣∣
w
. (5.104)

Since k ≥ 2, this means in particular that every fij occurring in the above sum has
commutator length strictly smaller than n. From this, we infer that

cfij ∈ SpanQ{r(τ)
∣∣
f
| f ∈ B, c`(f) < n}, (5.105)

for every cfij occurring in (5.104). However, since the map u → Lie(a, b), mapping f 7→
f(a) is injective, and since c`(f) = `(f(a)), we have

SpanQ{r(τ)
∣∣
f
| f ∈ B, c`(f) < n} = SpanQ{r(τ)(a)

∣∣
w
|w ∈ 〈a, b〉, `(w) < n}. (5.106)

The vector space on the right is contained in Algn−1
r by definition. In particular, every cfi

occurring in (5.104) is in Algn−1
r , therefore r(τ)k(a)

∣∣
w
∈ Algn−1

r .
Now that we have shown that r(τ)k(a)

∣∣
w
∈ Algn−1

r , for every k ≥ 2, we get from (5.102)
and from our induction hypothesis

g(τ)(a)
∣∣
w
− r(τ)(a)

∣∣
w
∈ Algn−1

r = Algn−1
g . (5.107)

Therefore, it follows that g(τ)(a)
∣∣
w
∈ Algnr , as well as r(τ)(a)

∣∣
w
∈ Algng , and the proposi-

tion is proved.

Theorem 5.4.10. There is a natural isomorphism of Q-algebras.

EZB−geom ∼= U(ugeom)∨. (5.108)

Proof: Let ugeom
a ⊂ L be the image of the evaluation map

ψa : ugeom → L
δ 7→ δ(a). (5.109)

Since ψa is injective (cf. Corollary 5.25), it induces an isomorphism of Q-vector spaces
ugeom ∼= ugeom

a , which can be promoted to an isomorphism of Lie algebras, by transporting
the Lie algebra structure on ugeom to ugeom

a . In particular, we get an isomorphism of the
corresponding universal enveloping algebras

U(ugeom) ∼= U(ugeom
a ), (5.110)
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which yields, when passing to the graded duals on both sides a natural isomorphism of
Q-algebras.

U(ugeom
a )∨ ∼= U(ugeom)∨. (5.111)

We now claim that U(ugeom
a )∨ is naturally isomorphic to EZB−geom as a Q-algebra. Indeed,

by definition EZB−geom is spanned as a Q-vector space by the coefficients of the series

g(τ)(ea) = exp(g(τ)(a)). (5.112)

By Proposition 5.4.8, EZB−geom is also generated as a Q-algebra by the coefficients of
r(τ)(a). Evaluation at r(τ)(a) induces a Q-linear morphism

r(τ)(a) ∈ HomQ((ugeom
a )∨, 〈E〉Q), (5.113)

and the image of r(τ)(a) generates EZB−geom as a Q-algebra. Equivalently, the element
r(τ)(a) induces an isomorphism (EZB−geom)∨ ∼= U(ugeom

a ), and dualizing this isomorphism
and composing with (5.111) finally yields the isomorphism

EZB−geom ∼= U(ugeom)∨. (5.114)

5.4.3 A-elliptic multiple zeta values and the Fourier sub-
space

In this subsection, we will see that the analogous statement for A-elliptic multiple zeta
values, namely that the highest length component is isomorphic to U(ugeom)∨, is not quite
true.

Definition 5.4.11. The Fourier subspace 〈E〉Fou
Q ⊂ 〈E〉Q is the Q-linear subspace, defined

by
〈E〉Fou

Q := SpanQ{E0(2k1, . . . , 2kn; τ) |n ≥ 0, ki ≥ 0}, (5.115)

where E0(2k1, . . . , 2kn−1, 0; τ) := 0 and for kn 6= 0, we set

E0(2k1, . . . , 2kn; τ) := E(2k1, . . . , 2kn; τ)− B2kn
4kn
E(2k1, . . . , 2kn−1, 0; τ). (5.116)

We will denote by T (e)∨Fou the subspace of T (e)∨, which is the image of 〈E〉Fou
Q under the

isomorphism 〈E〉Q ∼= T (e)∨ of Theorem 5.1.3.

Remark 5.4.12. By Remark 5.1.5, every iterated Eisenstein integral E(2k1, . . . , 2kn; τ)
has an expansion in q = and log(q) := 2πiτ with rational coefficients. A Q-linear combina-
tion of iterated Eisenstein integrals E(2k1, . . . , 2kn; τ) has a Fourier expansion ∑n≥0 anq

n

88



5.4. Length decomposition of elliptic multiple zeta values

(i.e. the log(q) terms all vanish) if and only if it is contained in 〈E〉Fou
Q . This follows easily

from the Fourier expansion E2k(τ) = −B2k
4k + O(q), valid for k > 0, which together with

E0 := −1 implies that E0(2k1, . . . , 2kn; τ) ∈ O(q), since the ideal q ·Q[[q]] ⊂ Q[[q]] is closed
under integration with respect to the measure dq

q .

Theorem 5.4.13. The embedding ιA of Theorem 5.3.1 maps EZA into the Fourier sub-
space, more precisely

ιA : EZA
↪→ U(ugeom)∨Fou ⊗Z[2πi], (5.117)

where U(ugeom)∨Fou := U(ugeom)∨ ∩ T (e)∨Fou.

Proof: We can rewrite g(τ) using the E0(2k1, . . . , 2kn; τ) as follows:

g(τ) =
∑

2k
E(2k; τ)ε̃2k

=
∑

2k, kn 6=0

(
E0(2k; τ) + B2kn

4kn
E(2k1, . . . , 2kn−1, 0; τ)

)
ε̃2k

+
∑

2k, kn=0
E(2k1, . . . , 2kn−1, 0; τ)ε̃2k ◦ ε̃0

(5.118)

=
∑

2k
E0(2k1, . . . , 2kn; τ)ε̃2k

+
∑

2k
E(2k1, . . . , 2kn−1, 0; τ)ε̃2k ◦

(
ε̃0 +

∑

kn≥1

B2kn
4kn

ε̃2k

︸ ︷︷ ︸
resgeom
∞

)
.

Since resgeom
∞ is a derivation that annihilates both ỹ and t, it annihilates every word in

ỹ and t. It follows that resgeom
∞ (A∞) = 0, since A∞ is a formal power series in ỹ and t.

Thus,
A(τ) = g(τ)(A∞) =

(∑

2k
E0(2k1, . . . , 2kn; τ)ε̃2k

)
(A∞), (5.119)

and therefore every coefficient of A(τ) is contained in 〈E〉Fou
Q ⊗Z[2πi].

Remark 5.4.14. (i) Theorem 5.4.13 reproves a result of Enriquez, namely that every
A-elliptic multiple zeta value has a Fourier expansion, whose coefficients are in
Z[2πi] (cf. [32], Proposition 5.2).

(ii) It follows from Theorem 5.4.13 that the Q-algebra EZA−geom is a Q-subalgebra of
U(ugeom)∨Fou. In analogy with Theorem 5.4.10, it is tempting to conjecture that

EZA−geom ∼= U(ugeom)∨Fou, (5.120)

but the author doesn’t know how to prove this.
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Appendix A

Some background

In this part of the appendix, we collect some well-known facts from the theory of Lie
algebras, as well as from the theory of iterated integrals. Results from this section are
sometimes used implicitly in the arguments in the main text.

A.1 Lie algebras

In this section, k is an arbitrary commutative ring. We follow [72].

A.1.1 General definitions
Definition A.1.1. (i) A Lie algebra g over k is a k-module together with a linear map

[·, ·] : g⊗k g→ k (A.1)

satisfying antisymmetry
[x, x] = 0, ∀x ∈ g (A.2)

as well as the Jacobi identity

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0, ∀x, y, z ∈ g. (A.3)

If the bracket [·, ·] is the zero map, g is called abelian. Moreover, a Lie algebra g is
called graded, if there exists a decomposition

g =
⊕

n≥0
gn (A.4)

into k-submodules gn, such that [gk, gl] ⊂ gk+l for all k, l ≥ 0.
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(ii) A derivation D on a Lie algebra g is a k-linear map

D : g→ g (A.5)

satisfying the Leibniz rule

D([x, y]) = [D(x), y] + [x,D(y)], ∀x, y ∈ g. (A.6)

If g is a graded Lie algebra, then the derivation D is called homogeneous of degree
k, if D(gn) ⊂ gn+k, for all n ≥ 0.

The set of all derivations of g is denoted by Der(g). One can show that Der(g) is again a
Lie algebra over k with bracket given by the commutator of derivations

[D1, D2] := D1 ◦D2 −D2 ◦D1. (A.7)

A.1.2 Universal enveloping algebras
Given an associative unital k-algebra A, one can endow A with the structure of a Lie
algebra Lie(A), which has the same underlying k-module as A, and whose Lie bracket is
given by

[a1, a2] := a1a2 − a2a1, ∀a1, a2 ∈ A. (A.8)

The construction of the universal enveloping algebra of a Lie algebra g is in some sense
the inverse to this.

Definition A.1.2. The universal enveloping algebra U(g) of g is an associative, unital
k-algebra together with a k-linear morphism ι : g → U(g), which satisfies the following
universal property: given any associative, unital k-algebra A together with a morphism

f : g→ Lie(A) (A.9)

of Lie algebras, there exists a unique morphism

f : U(g)→ A (A.10)

of k-algebras such that f ◦ ι = f .

Granting its existence, it is standard to show that U(g) is unique (up to unique isomor-
phism). Explicitly, U(g) may be constructed as the quotient of the tensor algebra

T (g) =
⊕

k≥0
g⊗k (A.11)

by the two-sided ideal, generated by all elements

ι([x, y])− (ι(x)⊗ ι(y)− ι(y)⊗ ι(x)), x, y ∈ g, (A.12)

where ι : g→ T (g) denotes the canonical inclusion.
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Example A.1.3. If g is an abelian Lie algebra with vector space basis (ei)i∈I , then

U(g) ∼= k[(ei)i∈I ], (A.13)

the k-algebra of polynomials in the variables ei.

A.1.3 Filtrations on Lie algebras
Every Lie algebra g is endowed with two descending filtrations. On the one hand, we have
the lower central series {gn}n≥0, defined inductively by

g0 := g, gn+1 := [gn, g], n ≥ 0, (A.14)

and the derived series, defined inductively by

g(0) := g, g(n+1) := [g(n), g(n)], n ≥ 0. (A.15)

From the definition, it is clear that both g(1) and g1 are equal to the commutator [g, g] of
g, however, in general the two filtrations are rather different.

A.1.4 Free Lie algebras
Let X be a set, and denote by AX the free, non-associative, unital k-algebra on the set
X ([72], LA 4.2). The algebra AX is graded for the degree, where all elements of X have
degree one.

Definition A.1.4. The free Lie algebra L(X) on X is defined to be the quotient of AX
by the two-sided ideal I generated by all elements aa and a(bc) + c(ab) + b(ca), where
a, b, c ∈ AX .

Since I is generated by homogeneous elements, it follows that L(X) inherits a grading
from AX .
Now denote by AssX the free, associative, unital k-algebra on X ([72], LA 4.4). It consists
of all k-linear combinations of elements of the free monoid X∗ (i.e. the set of all words on
the alphabet X, endowed with the concatenation product), and the multiplication on X∗

is extended k-linearly to AssX . In fact, AssX is even a Hopf algebra [1] whose coproduct
∆ is the unique coproduct, such that all x ∈ X are primitive, i.e. ∆(x) = 1 ⊗ x + x ⊗ 1,
and whose antipode S is the unique anti-homomorphism of AssX , satisfying S(x) = −x.
Moreover, AssX is graded for the degree, where every x ∈ X has degree one.

Proposition A.1.5. The universal enveloping algebra U(L(X)) is isomorphic to AssX ,
the free, associative, unital algebra on X.

Proof: [72], Theorem 4.2.
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A.1.5 Shuffle algebras
For a set X, the shuffle algebra k〈X〉 [66] has the same underlying k-module than AssX ,
but the multiplication is given by the shuffle product �, defined recursively as follows

w� 1 = 1� w = w, ∀w ∈ X∗

xiv
′
� xjw

′ = xi(v′ � xjw
′) + xj(xiv′ � w′), ∀xi, xj ∈ X, ∀v′, w′ ∈ X∗. (A.16)

One can show that the shuffle product is both commutative and associative, with neutral
element the empty word 1. In other words, k〈X〉 is a commutative, associative unital
k-algebra. It also carries a natural coproduct

∆ : k〈X〉 → k〈X〉 ⊗ k〈X〉 (A.17)

which is given by “deconcatenation”

∆(xi1 . . . xin) =
n∑

j=0
xi1 . . . xij ⊗ xij+1 . . . xin . (A.18)

In the special case where X is finite (the most interesting case for us in this thesis), one
can show (cf. [66], Chapter I) that k〈X〉 is the dual bialgebra of AssX . More precisely,
denoting by

(AssX)∨ :=
⊕

n≥0
(AssnX)∨, (A.19)

the graded dual of AssX , we have a natural isomorphism

k〈X〉 ∼= (AssX)∨. (A.20)

A.1.6 Completion of free Lie algebras
Recall from Appendix A.1.3 the definition of the lower central series {gn} on a Lie algebra
g. For every m ≥ n, we have canonical morphisms

g/gm → g/gn, (A.21)

which form an inverse system of Lie algebras.

Definition A.1.6. Define the completion L̂(X) of L(X) to be the inverse limit

lim←−
n

L(X)/L(X)n, (A.22)

of the above inverse system.
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The Lie algebra L̂(X) endowed with the inverse limit topology is a topological Lie algebra.
By definition, every element f ∈ L̂(X) can be represented uniquely by an infinite sum

f =
∞∑

n=0
fn, fn ∈ (L(X)n \ L(X)n+1) ∪ {0}, (A.23)

and the Lie bracket on L̂(X) is given by

[f, g]̂ = h =
∑

n≥0
hn, hn =

n∑

k=0
[fk, gn−k] ∈ L(X)n. (A.24)

The free associative unital algebra AssX can also be completed in a similar way, using
the augmentation ideal I(X) of AssX . By definition, I(X) ⊂ AssX is the two-sided
ideal generated by all elements x ∈ X. The powers of I(X) define an inverse system of
k-algebras via the canonical maps

AssX/I(X)m → AssX/I(X)n, m ≥ n, (A.25)

and one defines
ÂssX := lim←−

n

AssX/I(X)n. (A.26)

The Hopf algebra structure of AssX passes to ÂssX : more precisely, ÂssX is a topological
Hopf algebra, which will sometimes also be denoted by k〈〈X〉〉. It is the linear dual space
of the shuffle algebra k〈X〉 [66].
For the rest of this section, we assume that k is a Q-algebra. There exists a duality between
group-like elements of k〈〈X〉〉 and Q-algebra homomorphisms Q〈X〉 → k. By definition,
f ∈ k〈〈X〉〉 is group-like, if (f1 denoting the constant term of f)

f1 = 1, ∆f = f ⊗ f, (A.27)

where ∆ denotes the (completed) coproduct on k〈〈X〉〉, which is induced from the coproduct
on AssX .

Proposition A.1.7. Let k be a Q-algebra and f ∈ k〈〈X〉〉 be a group-like series. Then
the induced morphism

Q〈X〉 → k

w 7→ fw, (A.28)

where fw denotes the coefficient of w in the series f , is a homomorphism of Q-algebras.
Conversely, if g : Q〈X〉 → k is a homomorphism of Q-algebras, then the series

∑

w∈X∗
g(w) · w (A.29)

is group-like.
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Proof: [66], Section 1.5.

Corollary A.1.8. Let f ∈ k〈〈X〉〉 be a group-like series. Then the Q-linear span of the
coefficients of f

SpanQ{fw |w ∈ X∗} (A.30)

is a Q-subalgebra of k.

Now let Î(X)k〈〈X〉〉 be the two-sided ideal, which is topologically generated by X. Then
we have exponential and logarithm maps

exp : Î(X)→ 1 + Î(X), log : 1 + Î(X)→ Î(X), (A.31)

which are inverse to one-another and are defined by the usual power series

exp(x) =
∑

n≥0

xn

n! , log(1 + x) =
∑

n≥1
(−1)n+1x

n

n! (A.32)

(recall that k was assumed to be a Q-algebra).

Proposition A.1.9. The map exp defines a bijection between L̂(X) and the set of group-
like elements of k〈〈X〉〉

{f ∈ 1 + Î(X) |∆(f) = f ⊗ f}. (A.33)

Proof: [72], Corollary 7.3.

A.2 Iterated integrals and linear differential equations

In this section, we mostly follow [46]. A good reference is also [19].

A.2.1 Definition and properties
Let k denote either R or C, and letM be a smooth manifold over k. The set of all piecewise
smooth paths on M , we denote by PM , while E1(M) denotes the k-vector space of all
smooth differential one-forms on M .

Definition A.2.1. Let γ ∈ PM and ω1, . . . , ωn ∈ E1(M). Define the iterated integral
∫
γ ω1 . . . ωn by the formula

∫

γ
ω1 . . . ωn =

∫
· · ·
∫

0≤t1≤...tn≤1

f1(t1) . . . fn(tn)dt1 . . . dtn, (A.34)

where fi(ti)dti = γ∗(ωi).
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The following proposition subsumes many of the useful properties, which are satisfied by
iterated integrals.

Proposition A.2.2. Iterated integrals satisfy the following properties.

(i) If γ1, γ2 are two composable paths, i.e. γ1(1) = γ2(0), then
∫

γ1◦γ2
ω1 . . . ωn =

n∑

i=0

∫

γ1
ω1 . . . ωi

∫

γ2
ωi+1 . . . ωn. (A.35)

(ii) Denote by γ−1 : [0, 1]→M the reversed path γ−1(t) := γ(1− t). Then
∫

γ−1
ω1 . . . ωn = (−1)n

∫

γ
ωn . . . ω1. (A.36)

(iii) The product of iterated integrals is given by the shuffle product, i.e.
∫

γ
ω1 . . . ωr

∫

γ
ωr+1 . . . ωr+s =

∑

σ∈Σ(r,s)

∫

γ
ωσ(1) . . . ωσ(r+s), (A.37)

where

Σ(r, s) = {σ ∈ Σ(r + s) |σ−1(1) < . . . < σ−1(r), σ−1(r + 1) < . . . < σ−1(r + s)}.
(A.38)

(iv) The iterated integral
∫
γ ω1 . . . ωn is invariant under reparametrizations of γ.

(v) Iterated integrals are functorial with respect to smooth maps, i.e. if f : N →M is a
smooth map, γ ∈ PN and ω1, . . . , ωn ∈ E1(M), then

∫

γ
f∗(ω1) . . . f∗(ωn) =

∫

f∗(γ)
ω1 . . . ωn, (A.39)

where f∗(γ) := f ◦ γ.

(vi) For a path γ : [0, 1] → M , and a, b ∈ [0, 1] with a < b, let γba : [0, 1] → M be the
path γba(s) = γ(bs+ (1− s)a), which starts at a and ends at b. Then for all smooth
differential one-forms ω1, . . . , ωn, we have

∂

∂t

∣∣∣
t=a

∫

γbt

ω1 . . . ωn = −〈ω1, γ
′(a)〉

(∫

γba

ω2 . . . ωn

)
, (A.40)

∂

∂t

∣∣∣
t=b

∫

γta

ω1 . . . ωn =
(∫

γba

ω1 . . . ωn−1

)
〈ωn, γ′(b)〉, (A.41)

where 〈·, ·〉 is the natural pairing between differential forms and tangent vectors.
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Proof: The statements (i)-(v) are given in [46], as Proposition 2.9, Proposition 2.12,
Lemma 2.11, Proposition 2.4(a) and Proposition 1.2 respectively. On the other hand, (vi)
is given in [42] as Exercise 36. For the sake of completeness, we give a proof.
For t ∈ [0, 1] with t ≤ b, we can write γbt = γ|[t,b] ◦ ϕbt , where ϕbt(s) = sb + (1 − s)t. Then
by the very definition of iterated integrals, we get

∫

γbt

ω1 . . . ωn =
∫
· · ·
∫

0≤t1≤...≤tn≤1

(γbt )∗(ω1) . . . (γbt )∗(ωn). (A.42)

Using the functoriality of iterated integrals and invariance under reparametrization of
paths, we obtain that (A.42) equals

∫
· · ·
∫

t≤t1≤...≤tn≤b

γ∗(ω1) . . . γ∗(ωn). (A.43)

Using the fundamental theorem of calculus, we now get (A.40). The proof of (A.41) is
analogous.

Note that iterated integrals define functions on the set PM of all piecewise smooth paths
of M by the assignment

∫
ω1 . . . ωn : PM → k

γ 7→
∫

γ
ω1 . . . ωn. (A.44)

A.2.2 Linear differential equations and exponentials
The following classical proposition shows that solutions to initial value problems (IVPs)
are given by exponentials of Lie series (Proposition A.1.9). We cite from [43], Proposition
4.1 (with very minor notational differences). We use the notation and terminology of
Appendix A.1 in the case k = C.

Proposition A.2.3. Suppose that A : [0, 1]→ L̂(X) is smooth, i.e. every coefficient of A
is a smooth function of t ∈ [0, 1]. If f : [0, 1]→ C〈〈X〉〉 satisfies the IVP

f ′ = A · f, f(a) = 1, (A.45)

then f(t) is group-like for all t ∈ [0, 1].

Proof: Using that ∆ is a Q-algebra homomorphism, and A(t) is a Lie-series for every t,
we see that

(∆f)′ = ∆(f ′) = ∆(Af) = (∆A)(∆f) = (A⊗ 1 + 1⊗A)(f ⊗ f). (A.46)
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On the other hand, by the product rule

(f ⊗ f)′ = f ′ ⊗ f + f ⊗ f ′ = A · f ⊗ f + f ⊗A · f = (A⊗ 1 + 1⊗A) · (f ⊗ f). (A.47)

Thus both ∆(f) and f ⊗ f satisfy the IVP

g′ = (A⊗ 1 + 1⊗A) · g, Y (0) = 1⊗ 1, (A.48)

where g is a function g : [0, 1]→ C〈〈X〉〉 ⊗C〈〈X〉〉. But since solutions to IVPs are unique,
it follows that ∆(f)(t) = f(t)⊗ f(t) for all t.

A.2.3 Homotopy invariance

A particularly important subclass of all iterated integrals are the ones, which are invariant
under path homotopies. In general, a function Φ : PM → k is called a homotopy func-
tional, if Φ(γ0) = Φ(γ1) for all pairs of paths γ0, γ1, which are homotopic relative to their
endpoints.

Definition A.2.4. An iterated integral
∫
ω1 . . . ωn is homotopy invariant, if the induced

map on PM (A.44) is a homotopy functional. We define H0(B(M)) to be the set of all
homotopy invariant iterated integrals on M .

The set H0(B(M)) was introduced and studied by Chen in [25] as the zeroth cohomology
group of the so-called (reduced) bar complex B(M) of M , whence the notation. It is a
commutative k-algebra with the multiplication given by the shuffle product of iterated
integrals, and even a commutative Hopf algebra over k.

Example A.2.5. Let M = P1 \ {0, 1,∞}(C). Then by Chen’s π1-de Rham theorem
[25, 42, 46], a vector space basis for H0(B(M)) is given by the family of all iterated
integrals

∫
ωi1 . . . ωin , with ωij = dz

z−ij for ij ∈ {0, 1}. The non-commutative generating
series

T (γ) :=
∑

w=xi1 ...xin∈〈x0,x1〉

∫

γ
ωi1 . . . ωinw (A.49)

then defines for any choice of base points a, b ∈M a C-linear morphism

T : C[π1(M ; a, b)]→ C〈〈x0, x1〉〉
γ 7→ T (γ), (A.50)

which is injective and has dense image (cf. [42], Section 1.7).
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A.2.4 Regularization and tangential base points
We now specialize to the case where k = C and the manifold M is one-dimensional, in
other words, a Riemann surface. We will write C (for “curve”) instead of M from now on.
Let S ⊂ C be a discrete subset. Denote by Ω1(C; log(S)) the C-vector space of mero-
morphic differential one-forms on C, which are holomorphic on C \ S, and which have at
most logarithmic poles at every point s ∈ S. This last condition means that for every
ω ∈ Ω1(C; log(S)) and every s ∈ S, there exists a local coordinate zs at s, such that ω
written in that local coordinate equals

dzs
zs
. (A.51)

For two points s ∈ S and b ∈ C \ S, let P (C; s, b) be the set of all paths γ from s to b,
such that γ((0, 1]) ⊂ C \ S. Although the naive iterated integral

∫

γ
ω1 . . . ωn, ωi ∈ Ω1(C; log(S)) (A.52)

will diverge in general, in [26], §15, Deligne describes a procedure for regularizing the
iterated integral (A.52) so that it converges. We will describe in more detail a special case
of this regularization, which is sufficient for our purposes.
Let X be an alphabet, and C〈〈X〉〉 as defined in the last section. Let ω ∈ Ω1(C)⊗̂I(X) be
an I(X)-valued, formal differential one-form. Then for every path γ ∈ PM , the formal
series

exp
[∫

γ
ω

]
:= 1 +

∑

k≥1

∫

γ
ωk (A.53)

is a well-defined element of C〈〈X〉〉. By Proposition A.2.2.(vi), the function

Tω(γ1
t ) := exp

[∫

γ1
t

ω

]
, t ∈ [0, 1] (A.54)

satisfies the differential equation

∂

∂t
f(t) = −ω · f(t). (A.55)

In particular, if γ ∈ P (C; s, b) is a path as above, and ω ∈ Ω1(C; log(S))⊗̂I(X), then near
t = 0 (A.55) becomes

∂

∂t
f(t) = −∇(ω)s

t
· f(t) (A.56)

where ∇(ω)s ∈ I(X) is the residue of ω at s, which induces, by left multiplication, a
C-linear endomorphism of C〈〈X〉〉.
Since ω takes values in I(X), the image [∇(ω)s]n of ∇(ω)s in the quotient C〈〈X〉〉/I(X)n

is a nilpotent endomorphism of C〈〈X〉〉/I(X)n, for every n ≥ 1. Hence, from the general
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theory of linear differential equations with nilpotent residues (cf. [77], Ch. II), it follows
that the limit

lim
t→0

[t∇(ω)sTω(γ1
t )]n (A.57)

exists for any n ≥ 0. Also, for varying n, the elements (A.57) are compatible with the
morphisms C〈〈X〉〉/I(X)m → C〈〈X〉〉/I(X)n, for m ≥ n. We summarize this discussion in
the following

Proposition A.2.6. For ω, γ and a, b ∈ C \ S as above, the limit

lim
t→0

t∇(ω)sTω(γbt ) ∈ C〈〈X〉〉 (A.58)

exists. Similarly, the limit

lim
t→0

Tω(γta)t−∇(ω)s ∈ C〈〈X〉〉 (A.59)

exists.

Implicitly, the limits (A.58), (A.59) depend also on the choice of coordinate t. In [26],
this ambiguity is resolved by fixing a non-zero tangent vector −→v s ∈ Ts(C)× at s, and
demanding in addition that γ′(0) = −→v s. On the other hand, the mere existence of the
limits is unaffected by the choice of tangent vector.

Example A.2.7. On C = P1 \ {∞} with canonical coordinate z, consider the differential
one-form

ωKZ = dz
z
x0 + dz

z − 1x1 ∈ Ω1(C; log(S)), S = {0, 1}. (A.60)

This differential form has residue x0 at 0 and x1 at 1.
Fix the tangent vectors −→1 0 = ∂

∂z ∈ T0(C)× and −→1 1 = ∂
∂z ∈ T1(C). Then the straight

line path γ : [0, 1] ↪→ C from 0 to 1 satisfies γ′(0) = −→1 0 and γ′(1) = −→1 1. By Proposition
A.2.6, it follows that the limit

lim
t→0

tx0 exp
[ ∫

γ1−t
t

ωKZ

]
t−x1 (A.61)

exists. This is essentially the Drinfeld associator, more precisely (A.61) equals

Φ(x0, x1)op ∈ C〈〈X〉〉op, (A.62)

where a supscript op denotes the opposite algebra, i.e. concatenation of words is reversed:
(x0x1)op = x1x0.

Remark A.2.8. As noted above, the theory presented here is but a very special case of
Deligne’s theory of the “π1 à points bases tangentielles” (cf. [26], §15). At the heart of
this theory is the definition of the fundamental group π1(X;−→v ), where X is a smooth
algebraic curve and −→v is a tangential base point in a suitable “motivic” sense.
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LINEAR INDEPENDENCE OF INDEFINITE ITERATED

EISENSTEIN INTEGRALS

NILS MATTHES

Abstract. We prove linear independence of indefinite iterated Eisen-
stein integrals over the fraction field of the ring of formal power se-
ries Z[[q]]. Our proof relies on a general criterium for linear indepen-
dence of iterated integrals, which has been established by Deneufchâtel,
Duchamp, Minh and Solomon. As a corollary, we obtain C-linear inde-
pendence of indefinite iterated Eisenstein integrals, which has applica-
tions to the study of elliptic multiple zeta values, as defined by Enriquez.

1. Introduction

Given a collection ω1, . . . , ωr of smooth one-forms on a smooth manifold
M , and a smooth path γ : [0, 1]→M , one defines their iterated integral as

∫

γ
ω1 . . . ωr =

∫

0≤t1≤...≤tr≤1
γ∗(ω1) . . . γ

∗(ωr), (1.1)

where γ∗(ωi) = fi(ti)dti denotes the pull back of ωi along γ. In the case of
a single differential one-form ω, (1.1) is simply the path integral of ω along
γ.

A classical application of iterated integrals is the construction of solutions
to certain systems of linear differential equations via the method of Picard
iteration (cf. e.g. [14]). However, iterated integrals also appear in num-
ber theory, prominent examples being multiple polylogarithms and multiple
zeta values, which are iterated integrals on P1 \ {0, 1,∞} (see for example
the lecture notes [8] for an introduction from the point of view of iterated
integrals). It is known that the multiple polylogarithms are linearly inde-
pendent over C [13]. Using rather different techniques, this result has been
generalized [5], with C replaced by an arbitrary field of functions satisfying
some extra conditions.

On the other hand, another family of iterated integrals arising in num-
ber theory are iterated integrals of modular forms. Their study has been
initiated by Manin [11], and was later extended in [3, 7, 9]. Known in the
literature under the names iterated Eichler integrals [3] or iterated Shimura
integrals [11], these are iterated integrals on the upper half-plane, which
generalize the classical Eichler integrals [10], and are also closely related to
L-functions of modular forms [11, 3].

Iterated integrals of modular forms also appear in the study of elliptic
multiple zeta values [4, 6, 2, 12], the latter being a natural genus one analogue
of the classical multiple zeta values. In [2], a procedure for decomposing
elliptic multiple zeta values into certain C-linear combinations of (indefinite)
iterated integrals of Eisenstein series (called iterated Eisenstein integrals

1
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for short)1 is described. The uniqueness of this decomposition, important
both for the mathematical theory as well as for applications to physics [1],
depended on the C-linear independence of the iterated Eisenstein integrals
in question.

In this paper, we prove linear independence of iterated Eisenstein inte-
grals, first over the fraction field Frac(Z[[q]]) of the ring of formal power
series in one variable with integer coefficients, where q is viewed as a coordi-
nate on the open unit disk. By the main result of [5], it is enough to prove
that Frac(Z[[q]]) does not contain primitives of Eisenstein series, which in
turn follows from a computation of their denominators.

Having established linear independence over Frac(Z[[q]]), the linear inde-
pendence of iterated Eisenstein integrals over Q follows immediately, since
Q ⊂ Frac(Z[[q]]). Finally, by extending scalars from Q to C, we obtain the
desired C-linear independence of iterated Eisenstein integrals.

Acknowledgments. Very many thanks to Pierre Lochak for bringing the
paper [5] to my attention, as well as for helpful discussions and remarks.
This paper is part of the author’s doctoral thesis at Universität Hamburg,
and I would like to thank my advisor Ulf Kühn for helpful remarks.

2. Iterated Eisenstein integrals

2.1. Eisenstein series. . For k ≥ 1 denote by G2k the Hecke-normalized
Eisenstein series (cf. e.g. [17]), which is the function on the upper half-plane
H = {z ∈ C | =(z) > 0}, defined by the convergent series

G2k(q) = −B2k

4k
+
∑

n≥1
σ2k−1(n)qn ∈ Q⊕ qZ[[q]], q = e2πiτ ,

where B2k denotes the 2k-th Bernoulli number, and σ2k−1(n) =
∑

d|n d
2k−1.

We also set G0 ≡ −1.
The function G2k is holomorphic, and, for k ≥ 2, it is a modular form for

SL2(Z). Write G∞2k for the constant term in its q-expansion, and likewise
G0

2k(q) for G2k(q)−G∞2k. Note that for k ≥ 1, we have

G∞2k = −B2k

4k
, G0

2k(q) =
∑

n≥1
σ2k−1(n)qn.

2.2. Regularization of iterated integrals. . We would now like to define
iterated Eisenstein integrals

∫ i∞

τ
G2k1(q1)dτ1 . . . G2kn(qn)dτn

as functions depending on some start point τ ∈ H, where the integration
is performed along some path from τ to the cusp i∞2. Unfortunately, in
this case the usual definition of iterated integrals (1.1) produces divergent
integrals, already in the case of single Eisenstein integrals, i.e. for n = 1.
In order to overcome this problem, we describe a regularization scheme for

1All modular forms appearing in this paper are modular forms for the group SL2(Z).
2The value of the iterated integral does not depend on the choice of path, since the

Eisenstein series are holomorphic functions on a one-dimensional complex manifold.

105



LINEAR INDEPENDENCE OF INDEFINITE ITERATED EISENSTEIN INTEGRALS 3

such iterated integrals, introduced by Brown in [3]. For the rest of this
subsection, we follow [3].

Let W = C[[q]]<1 be the C-algebra of formal power series, which converge
on the open q-disk D = {q ∈ C | |q| < 1}, and denote by D∗ := D \ {0} the
punctured disk. Via the universal covering map

exp : H→ D∗, τ 7→ e2πiτ , (2.1)

we can consider W as a C-subalgebra of the C-algebra O(H) of holomorphic
functions on the upper half-plane.

Write W = W 0⊕W∞ with W 0 = qC[[q]] and W∞ = C. For a power series
f ∈ W , define f0 to be its image in W 0 under the natural projection, and
define f∞ ∈W∞ likewise. Denote by T c(W ) the tensor coalgebra on the C-
vector space W , which comes equipped with a shuffle product�. We will use
bar notation for elements of T c(W ), and define a map R : T c(W )→ T c(W )
by the formula

R[f1| . . . |fn] =
n∑

i=0

(−1)n−i[f1| . . . |fi]� [f∞n | . . . |f∞i+1].

We can now make the

Definition 2.1. Given f1, . . . , fn ∈ W ⊂ O(H) as above, their regularized
iterated integral is defined as

I(f1, . . . , fn; τ) :=

n∑

i=0

∫ i∞

τ
R[f1| . . . |fi]dτ

∫ 0

τ
[f∞i+1| . . . |f∞n ]dτ , (2.2)

where ∫ b

a
[f1| . . . |fn]dτ :=

∫ b

a
f1(τ1)dτ1 . . . fn(τn)dτn.

Proposition 2.2. For all f1, . . . , fn ∈ W , I(f1, . . . , fn; τ) is well-defined,
i.e. (2.2) is finite, and we have

∂

∂τ

∣∣∣
τ=τ0

I(f1, . . . , fn; τ) = −f1(τ0)I(f2, . . . , fn; τ0).

Proof: [3], Lemma 4.5 and Proposition 4.7 i). �

The second part of the preceding proposition is the analogue for regu-
larized iterated integrals of the differential equation satisfied by ordinary
iterated integrals ([8], p.40). It will be crucial in the proof of linear inde-
pendence of iterated Eisenstein integrals.

2.3. Iterated integrals on the q-disk. . We have seen that I(f1, . . . , fn; τ)
is a holomorphic function on the upper half-plane. Using the change of coor-
dinates (2.1), we can rewrite I(f1, . . . , fn; τ) as a regularized iterated integral
on the punctured q-disk

I(f1, . . . , fn; τ) =
1

(2πi)n

n∑

i=0

∫ 0

q
R[f1| . . . |fi]dq

q

∫ 1

q
[(f∞)i+1| . . . |(f∞)n]dq

q
.

(2.3)
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The virtue of representation (2.3) is that one sees that

I(f1, . . . , fn; τ) ∈W [log(q)], log(q) := 2πiτ,

and therefore every linear identity between the I(f1, . . . , fn; τ) reduces, by
comparing coefficients, to a linear system of equations. Also, note that if all
fi ∈WQ := Q[[q]] ∩W , then (2πi)nI(f1, . . . , fn; τ) ∈WQ[log(q)].

Definition 2.3. For k1, . . . , kn ≥ 0, we define the (indefinite, Hecke-normalized)
iterated Eisenstein integral to be

G(2k1, . . . , 2kn; q) = (2πi)nI(G2k1 , . . . , G2kn ; τ) ∈WQ[log(q)]. (2.4)

Note that by Proposition 2.2,

1

2πi

∂

∂τ

∣∣∣
τ=τ0
G(2k1, . . . , 2kn; q) = q

∂

∂q

∣∣∣
q=q0
G(2k1, . . . , 2kn; q)

= −G2k1(q0)G(2k2, . . . , 2kn; q0). (2.5)

Example 2.4. In length one, we have (cf. [3], Example 4.10)

G(2k; q) =
B2k

4k
log(q)−

∑

n≥1

σ2k−1(n)

n
qn.

Later on, we will also need the integral over the non-constant part G0
2k of

the Eisenstein series G2k. We denote this by

G0(2k; q) :=

∫ 0

q
G0

2k(q1)
dq1
q1

= −
∑

n≥1

σ2k−1(n)

n
qn. (2.6)

3. Proof of linear independence

Having defined iterated Eisenstein integrals in the last section, we now
turn to the proof of their linear independence. The larger part of this section
is devoted to proving linear independence over Frac(Z[[q]]), the fraction field
of the ring of formal power series with integer coefficients. In order to achieve
this, we use the following general linear independence result for iterated
integrals, which is (a special case of) the main result of [5] (Theorem 2.1).
Let X be an alphabet (not necessarily finite), and denote by X∗ the free
monoid on X.

Theorem 3.1 (Deneufchâtel, Duchamp, Minh, Solomon). Let (A, d) be
a differential algebra over a field k of characteristic zero, whose ring of
constants ker(d) is precisely equal to k. Let C be a differential subfield of A
(i.e. a subfield such that dC ⊂ C). Suppose that S ∈ A〈〈X〉〉 is a solution to
the differential equation

dS = M · S,
where M =

∑
x∈X uxx ∈ C〈〈X〉〉 is a homogeneous series of degree 1, with

initial condition S1 = 1, where S1 denotes the coefficient of the empty word
in the series S. The following are equivalent:

(1) The family of coefficients (Sw)w∈X∗ of S is linearly independent over
C.
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(2) The family {ux}x∈X is linearly independent over k, and we have

dC ∩ Spank({ux}x∈X) = {0}. (3.1)

We are now in a position to prove our main result.

Theorem 3.2. The family of iterated Eisenstein integrals (2.4) is linearly
independent over Frac(Z[[q]]).

Proof: We will apply Theorem 3.1 with the following parameters:

• k = Q, A = Q[log(q)]((q)) with differential d = q ∂∂q , and C =

Frac(Z[[q]]) (the latter is a differential field by the quotient rule for
derivatives)
• X = {a2k}k≥0, ua2k = −G2k(q), hence

M(τ) = −
∑

k≥0
G2k(q)a2k.

With these conventions, it follows from (2.5) that the formal series

1 +

∫ i∞

τ
[M(τ1)]dτ +

∫ i∞

τ
[M(τ1)|M(τ2)]dτ + . . . ∈ O(H)〈〈X〉〉,

where the iterated integrals are regularized as in Section 2.2, is a solution
to the differential equation dS = M · S, with S1 = 1. Consequently, the
coefficient of the word w = a2k1 . . . a2kn in S is equal to G(2k1, . . . , 2kn; q).
Moreover, since Q-linear independence of the Eisenstein series is well-known
(cf. e.g. [16], VII.3.2), it remains to verify (3.1) in our situation.

To this end, assume that there exist α2k ∈ Q, all but finitely many of
which are equal to zero, such that

∑

k≥0
α2kG2k(q) ∈ dC. (3.2)

Clearing denominators, we may assume that α2k ∈ Z. Furthermore, from
the definition of d = q ∂∂q , one sees that the image dC of the differential

operator d does not contain any constant except for zero. Therefore, the
coefficient of the word 1 in (3.2) vanishes; in other words

∑

k≥0
α2kG2k(q) =

∑

k≥1
α2kG

0
2k(q) ∈ qQ[[q]].

Now the differential d is invertible on qQ[[q]], and inverting d is the same as
integrating. Hence (3.2) is equivalent to

∑

k≥1
α2kG0(2k; q) ∈ C. (3.3)

But this is absurd, unless all the α2k vanish, as we shall see now. In-
deed, if f ∈ C = Frac(Z[[q]]), then there exists m ∈ Z \ {0} such that
f ∈ Z[m−1]((q)). This follows from the well-known inversion formula for
power series. On the other hand, the coefficient of qp in G0(2k; q), for p a
prime number, is given by

σ2k−1(p)
p

=
p2k−1 + 1

p
≡ 1

p
mod Z

Appendix B. Linear independence of indefinite iterated Eisenstein integrals
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(cf. (2.6)). Thus, we must have

1

p

∑

k≥1
α2k ∈ Z[m−1],

for every prime number p. But then the integer
∑

k≥1 α2k is divisible by

infinitely many primes (namely, at least all the primes which don’t divide
m), which implies

∑
k≥1 α2k = 0.

Now assume that k1 is the smallest positive, even integer with the property

that αk1 6= 0. Consider the coefficient of qp
k1 in G0(2k; q), which is equal to

σ2k−1(pk1)

pk1
=

1

pk1

k1∑

j=0

pj(2k−1) ≡
{

1
pk1

mod Z if 2k > k1
1
pk1

+ 1
p mod Z if 2k = k1

(cf. (2.6)). By (3.3),
αk1
p + 1

pk1

∑
k≥1 α2k ∈ Z[m−1], and by what we have

seen before,
∑

k≥1 α2k = 0. Hence

αk1
p
∈ Z[m−1],

for every prime number p, which again implies αk1 = 0, in contradiction to
our assumption αk1 6= 0. Therefore, in (3.3), we must have α2k = 0 for all
k ≥ 1 and (3.1) is verified. �

Having established linear independence of iterated Eisenstein integrals
over the field Frac(Z[[q]]), linear independence over C follows almost imme-
diately.

Corollary 3.3. The family of iterated Eisenstein integrals G(2k1, . . . , 2kn; q)
for n ≥ 0 and all ki ≥ 0 is linearly independent over the complex numbers.

Proof: Let G1, . . . ,Gn be iterated Eisenstein integrals, and assume we have
a relation

n∑

i=1

αiGi = 0

with αi ∈ C. Since Q ⊂ Frac(Z[[q]]), it follows from Theorem 3.2 that
the matrix of the coefficients of the Gi, considered as series in log(q)kql for
k, l ≥ 0, has maximal rank n. Therefore αi = 0 for i = 1, . . . , k. �
Remark 3.4. By the shuffle product formula, the C-vector space spanned
by the iterated Eisenstein integrals is a C-algebra. Corollary 3.3 implies that
it is a free shuffle algebra, and thus a polynomial algebra by [15].
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Abstract

We investigate iterated integrals on an elliptic curve, which are a natural genus-
one generalization of multiple polylogarithms. These iterated integrals coincide
with the multiple elliptic polylogarithms introduced by Brown and Levin when
constrained to the real line. At unit argument they reduce to an elliptic analogue
of multiple zeta values, whose network of relations we start to explore. A simple
and natural application of this framework are one-loop scattering amplitudes in
open superstring theory. In particular, elliptic multiple zeta values are a suitable
language to express their low energy limit. Similar to the techniques available
at tree-level, our formalism allows to completely automatize the calculation.
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1 Introduction

In recent years, we have witnessed numerous fruitful interactions between number theory and
particle physics. A particularly rich domain of intersection are iterated integrals, which promi-
nently appear in scattering amplitudes in field theories and string theories. For a large class
of Feynman and worldsheet integrals, multiple polylogarithms were recognized as a suitable
language to cast results into a manageable form, see e.g. refs. [1–4]. In a variety of cases, the
polylogarithms’ Hopf algebra structure [5–8] paved the way towards efficient manipulations and
the recognition of the simplicity hidden in the resulting scattering amplitudes.

However, a growing list of iterated integrals from various field and string theories implies that
multiple polylogarithms do not mark the end of the rope in terms of transcendental functions
appearing in scattering amplitudes. For example, multiple polylogarithms fail to capture the
two-loop sunset integral with non-zero masses [9–11], an eight-loop graph in φ4 theory [12,13] as
well as the ten-point two-loop N3MHV amplitude in N = 4 super-Yang–Mills (sYM) theory [14].
The sunset integral and its generalization have recently been expressed in terms of elliptic di-
and trilogarithms [10, 11, 15], whose connection to the language suggested below remains to be
worked out. Considering in addition their appearance in one-loop open-string amplitudes, the
situation calls for a systematic study and classification of the entire family of elliptic iterated
integrals1.

In the present article, we propose a framework for elliptic iterated integrals (or eIIs for
short) and the associated periods, elliptic multiple zeta values (eMZVs). The framework aims
at expressing scattering amplitudes in a variety of theories, and we here apply the techniques
to one-loop amplitudes in open string theory as a first example. The language employed in the
present article is primarily inspired by refs. [16,17], while refs. [18–22] contain further information
on the mathematical background.

As opposed to multiple polylogarithms, which can be defined using just one type of differ-
ential form, elliptic iterated integrals require an infinite tower thereof [16]. These differential
forms are based on a certain non-holomorphic extension of a classical Eisenstein-Kronecker se-
ries [23, 16], and we show how they can be used to naturally characterize and label elliptic
iterated integrals as well as eMZVs. We investigate their relations, which results in constructive
algorithms to perform amplitude computations.

In the same way as multiple zeta values (MZVs) arise from multiple polylogarithms at unit
argument, the evaluation of iterated integrals along a certain path of an elliptic curve leads to
structurally interesting periods, the eMZVs [17] mentioned above. These are certain analogues
of the standard MZVs, which are related to elliptic associators [24] in the same way as MZVs are
related to the Drinfeld associator [25–27]. However, the precise connection is beyond the scope
of the current article. Given their ubiquitous appearance in the subsequent string amplitude
computation, we will investigate eMZVs and discuss some of their properties as well as their
Q-linear relations.

The description of string scattering amplitudes via punctured Riemann surfaces at various
genera directly leads to iterated integrals at the corresponding loop order. In particular, the disk
integrals in open-string2 tree-level amplitudes closely resemble multiple polylogarithms. Initially
addressed via hypergeometric functions in refs. [34, 35], the α′-expansion of disk amplitudes
finally proved to be a rich laboratory for MZVs. Their pattern of appearance has been understood

1The elliptic iterated integrals discussed in this work shall not be confused with elliptic integrals determining
the arc length of an ellipse.

2In comparison to open-string amplitudes at tree-level, MZVs occurring in closed-string tree amplitudes [28,29]
are constrained by the single-valued projection, see [30,31] for mathematics and [32,33] for physics literature.

2
113



in terms of mathematical structures such as motivic MZVs [7, 29] and the Drinfeld associator
[36–38]. Explicit expressions with any number of open-string states can be determined using
polylogarithm manipulations [3] or a matrix representation of the associator [38]. A variety of
examples are available for download at the website [39].

The calculation of one-loop open-string amplitudes involves worldsheet integrals of cylinder
and Möbius-strip topology [40]. In the current article, we focus on iterated integrals over a
single cylinder boundary and leave the other topologies for later. Recognizing the cylinder as a
genus-one surface with boundaries, it is not surprising that the α′-expansion of one-loop open-
string amplitudes is a natural, simple and representative framework for the application of eIIs
and eMZVs. We will explicitly perform calculations at four and five points for low orders in α′ in
order to demonstrate their usefulness. Higher multiplicities and orders in α′ are argued to yield
eMZVs and Eisenstein series on general grounds. In summary, one-loop string amplitudes turn
out to be an ideal testing ground for the study of eMZVs, in particular because they appear in
a more digestible context as compared to their instances in field theory.

This article is organized as follows: In section 2, we start by reviewing multiple polyloga-
rithms and show, how their structure suggests a generalization to genus one. The appropriate
differential forms and doubly-periodic functions are discussed and put into a larger mathematical
context in section 3. Section 4 is devoted to the application of eIIs and eMZVs to the four-point
one-loop amplitude of the open string, while section 5 contains a discussion of its multi-particle
generalization.

2 Iterated integrals on an elliptic curve

After recalling the definition of multiple polylogarithms as well as several conventions, we will
introduce elliptic iterated integrals (eIIs) as their genus-one analogues. While we will limit our-
selves to basic definitions and calculational tools in the current section, a thorough introduction
to the mathematical background of doubly-periodic functions will be provided in section 3.

2.1 Multiple polylogarithms

Multiple polylogarithms are defined by3

G(a1, a2, . . . , an; z) ≡
∫ z

0

dt
t− a1

G(a2, . . . , an; t) (2.1)

where G(; z) ≡ 1 apart from G(~a; 0) = G(; 0) = 0. Below, we will refer to ~a = (a1, . . . , an) as
the label and call z the argument of the polylogarithm G. Powers of ordinary logarithms can be
conveniently represented in terms of multiple polylogarithms via

G(0, 0, . . . , 0︸ ︷︷ ︸
n

; z) = 1
n! lnn z, G(1, 1 . . . , 1︸ ︷︷ ︸

n

; z) = 1
n! lnn(1− z) and

G(a, a, . . . , a︸ ︷︷ ︸
n

; z) = 1
n! lnn

(
1− z

a

)
. (2.2)

In addition, multiple polylogarithms satisfy the scaling property

G(ka1, ka2, . . . , kan; kz) = G(a1, a2, . . . , an; z) , k 6= 0 , an 6= 0 , z 6= 0 , (2.3)
3The conventions for multiple polylogarithms used in this paper agree with those in refs. [5, 29, 41]. Other

aspects of multiple polylogarithms are discussed for example in references [42,43].

3

Appendix C. Elliptic multiple zeta values and one-loop superstring amplitudes

114



whose interplay with a general shuffle regularization will be discussed below eq. (2.9). Another
property is referred to as the Hölder convolution [44]: for a1 6= 1 and an 6= 0 one finds

G(a1, . . . , an; 1) =
n∑

k=0
(−1)kG

(
1− ak, . . . , 1− a1; 1− 1

p

)
G

(
ak+1, . . . , an; 1

p

)
(2.4)

for all p ∈ C \ {0}. Multiple polylogarithms constitute a graded commutative algebra with the
shuffle product [5–8]

G(a1, . . . , ar; z)G(ar+1, . . . , ar+s; z) =
∑

σ∈Σ(r,s)
G(aσ(1), . . . , aσ(r+s); z) (2.5)

≡ G((a1, . . . , ar)� (ar+1, . . . , ar+s); z
)
,

where the shuffle Σ(r, s) is the subset of the permutation group Sr+s acting on {a1, . . . , ar+s}
which leaves the order of the elements of the individual tuples {a1, . . . , ar} and {ar+1, . . . , ar+s}
unchanged. The unit element for shuffling is G(; z)=1.

MZVs are special cases of multiple polylogarithms with labels ai ∈ {0, 1} evaluated at argu-
ment z = 1:

ζn1,...,nr = (−1)rG(0, 0, . . . , 0, 1︸ ︷︷ ︸
nr

, . . . , 0, 0, . . . , 0, 1︸ ︷︷ ︸
n1

; 1) , (2.6)

where the numbers below the underbraces denote the number of entries4.
From the definition (2.1) it is obvious that multiple polylogarithms diverge when either

a1 = z or an = 0. As discussed in refs. [5, 6], the general idea for regularizing the integrals
is to slightly move the endpoints of the integration by a small parameter and to afterwards
expand in this parameter. The regularized value of the polylogarithm is defined to be the piece
independent of the regularization parameter, which can be extracted using shuffle relations. For
the case where a1 = z the regularized value can be obtained via

G(z, a2, . . . , an; z) = G(z; z)G(a2, . . . , an; z)−G(a2, z, a3, . . . , an; z)
−G(a2, a3, z, a4, . . . , an; z)− . . .−G(a2, . . . , an, z; z) (2.7)

where one defines
G(z, . . . , z; z) = 0 . (2.8)

The situation, where an = 0 can be dealt with accordingly

G(a1, a2, . . . ,an−1, 0; z) = G(a1, a2, . . . , an−1; z)G(0; z)−G(a1, a2, . . . , 0, an−1; z)
−G(a1, a2, . . . , 0, an−2, an−1; z)− . . .−G(0, a2, . . . , an−1; z) , (2.9)

where now, however, G(0; z) = ln(z) 6= 0. Although the above rewriting keeps the pure loga-
rithms explicit, it will nevertheless prove convenient in order to bypass subtleties of the identity
eq. (2.11) below. Multiple polylogarithms are understood to be shuffle-regularized in a way
compatible with eq. (2.3).

Regularization of multiple polylogarithms can be straightforwardly translated to MZVs. All
MZVs ζn1,...,nr with nr = 1 are defined by their shuffled version eq. (2.7). Employing eq. (2.3),
one finds G(1, . . . , 1; 1) = 0 from eq. (2.8) immediately.

4Our convention for MZVs agrees with refs. [5, 29, 45].
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2.1.1 Removing the argument z from the label

Starting from an arbitrary iterated integral, the corresponding polylogarithm can not always
be determined straightforwardly: whenever the argument appears in the label ~a, an integra-
tion using eq. (2.1) is impossible. Solving this problem requires a rewriting of the multiple
polylogarithm

G({0, a1, a2, . . . , an, z}; z) (2.10)

in terms of polylogarithms whose labels are free of the argument. In the above equation {a, b, . . .}
refers to a word built from the letters a, b, . . . . Polylogarithms of the special form G(~a, z) with
ai ∈ {0, z} can be rescaled to yield MZVs using eq. (2.3) provided that the last entry of ~a is
different from zero. In a generic situation, the relation [3]

G(a1, . . . , ai−1, z, ai+1, . . . , an; z) = G(ai−1, a1, . . . , ai−1, ẑ, ai+1, . . . , an; z) (2.11a)
−G(ai+1, a1, . . . , ai−1, ẑ, ai+1, . . . , an; z) (2.11b)

−
∫ z

0

dt
t− ai−1

G(a1, . . . , âi−1, t, ai+1, . . . , an; t) (2.11c)

+
∫ z

0

dt
t− ai+1

G(a1, . . . , ai−1, t, âi+1, . . . , an; t) (2.11d)

+
∫ z

0

dt
t− a1

G(a2, . . . , ai−1, t, ai+1, . . . , an; t) (2.11e)

allows to recursively remove the argument z from the labels of a multiple polylogarithm, because
the expressions on the right-hand side either have shorter labels or are free of z. A hat denotes
the omission of the respective label, and it is assumed that at least one aj 6= 0. The availability
of a recursive formula like eq. (2.11) is intrinsic to the moduli space of Riemann spheres with
marked points [46]. An explicit discussion including algorithms is ref. [47].

As an identity similar to eq. (2.11) will be crucial in deriving relations for eIIs in subsection 2.2
below, let us briefly comment on the application and generalization of eq. (2.11): If the argument
z appears multiple times in the label ~a, the first four terms on the right hand side (terms (2.11a)
to (2.11d)) have to be evaluated for each occurrence of z. The reduction will lead to expressions
where the labels of the polylogarithms on the right hand side are independent of z or shorter,
which is ensured by cancellations between neighboring terms. If an = z, the term (2.11d) has
to be dropped and the term (2.11b) needs to be altered to −G(0, a1, . . . , ai−1, ẑ; z).

Multiple polylogarithms with a1 = z require special attention as well. However, in order to
keep the exposition simple, we will assume that those polylogarithms have already been taken
care of by applying the shuffle regularization rule eq. (2.7).

The following examples (with aj 6= z) are typical relations derived from the above identity:

G(a1, 0, z; z) = G(0, 0, a1; z)−G(0, a1, a1; z)−G(a1; z)ζ2

G(a1, z, a2; z) = G(a1, a1, a2; z)−G(a2, 0, a1; z) +G(a2, a1, a1; z)−G(a2, a1, a2; z) . (2.12)

Proving eq. (2.11) is straightforward. It relies on writing the polylogarithm on the left hand
side as the integral over its total derivative and using partial fraction as well as relations (A.1)
to (A.3) in appendix A. Finally, let us note that eq. (2.11) preserves shuffle regularization. The
complete proof of eq. (2.11) as well as numerous examples are contained in section 5 of ref. [3].
A collection of identities between MZVs can be found in the multiple zeta value data mine [48].
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2.2 Iterated integrals on an elliptic curve

In this subsection we are going to take a first look at eIIs. In the following exposition, we will
omit several mathematical details, which will be discussed in section 3 below. As eIIs will turn
out to be a generalization of the multiple polylogarithms discussed above, we will follow the
structure of the previous subsection closely.

In eq. (2.1), the differential dt is weighted by

1
t− ai

, (2.13)

which yields iterated integrals on the genus-zero curve C \ {a1, ..., an}. Here, we propose a
generalization to eIIs. An infinite number of weighting functions f (n) of weights n = 0, 1, 2, . . .
is necessary, whose appearance will be justified and whose precise definition will be provided in
section 3. They lead to eIIs in the same way as does eq. (2.13) at genus zero. Accordingly, the
functions f (n)(z, τ) are doubly periodic with respect to the two cycles of the torus, with modular
parameter τ in the upper half plane

f (n)(z, τ) = f (n)(z + 1, τ) and f (n)(z, τ) = f (n)(z + τ, τ) . (2.14)

Below, we are going to suppress the τ -dependence and will simply write f (n)(z). As will be
explained in subsection 3.3, the functions f (n) are known for all non-negative integer weights
n. In particular they are non-holomorphic and expressible in terms of the odd Jacobi function
θ1(z, τ), e.g.

f (0)(z) ≡ 1 , f (1)(z) ≡ ∂ ln θ1(z, τ) + 2πi Im z

Im τ
(2.15)

f (2)(z) ≡ 1
2
[(
∂ ln θ1(z, τ) + 2πi Im z

Im τ

)2
+ ∂2 ln θ1(z, τ)− 1

3
θ′′′1 (0, τ)
θ′1(0, τ)

]
(2.16)

where ∂ and ′ denote a derivative in the first argument of θ1. Their parity alternates depending
on the weight n:

f (n)(−z) = (−1)nf (n)(z) . (2.17)

The functions f (n) are defined for arbitrary complex arguments z. Restricting to real argu-
ments z, however, will not only simplify eqs. (2.15) and (2.16) but in addition lead to the system
of iterated integrals appropriate for the one-loop open-string calculations in sections 4 and 5
below. Hence, in the remainder of the current section, any argument and label of the eIIs to be
defined is assumed to be real. We will comment on the additional ingredients required for generic
complex arguments z and relate them to multiple elliptic polylogarithms in subsection 3.1.

Employing the functions f (n), eIIs are defined in analogy to eq. (2.1) via

Γ ( n1 n2 ... nr
a1 a2 ... ar ; z) ≡

∫ z

0
dt f (n1)(t− a1) Γ ( n2 ... nr

a2 ... ar ; t) , (2.18)

where the recursion starts with Γ(; z) ≡ 1. Following the terminology used for f (n) above, the
eII in eq. (2.18) is said to have weight ∑r

i=1 ni, and the number r of integrations will be referred
to as its length.

The definition of eIIs directly implies a shuffle relation with respect to the combined letters
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Ai ≡ ni
ai describing the integration weights f (ni)(z − ai),

Γ(A1, A2, . . . , Ar; z) Γ(B1, B2, . . . , Bq; z) = Γ
(
(A1, A2, . . . , Ar)� (B1, B2, . . . , Bq); z

)
, (2.19)

where the shuffle symbol has been defined in eq. (2.5). Another immediate consequence of
definition (2.18) is the reflection identity

Γ ( n1 n2 ... nr
a1 a2 ... ar ; z) = (−1)n1+n2+...+nr Γ ( nr ... n2 n1

z−ar ... z−a2 z−a1 ; z) . (2.20)

Formally reminiscent of the Hölder convolution in eq. (2.4), the above reflection identity is valid
for all arguments z ∈ C \ {0}. It can be proven using the parity properties of the weighting
functions f (n) in eq. (2.17) and a reparametrization of the integration domain. If all the labels
ai vanish, we will often use the notation

Γ(n1, n2, . . . , nr; z) ≡ Γ ( n1 n2 ... nr
0 0 ... 0 ; z) . (2.21)

2.2.1 Elliptic multiple zeta values

Evaluating eIIs with all ai equal to 0 (or equivalently ai = 1 by the periodicity property
eq. (2.14)) at z = 1 gives rise to iterated integrals

ω(n1, n2, . . . , nr) ≡
∫

0≤zi≤zi+1≤1

f (n1)(z1)dz1 f
(n2)(z2)dz2 . . . f

(nr)(zr)dzr (2.22)

= Γ(nr, . . . , n2, n1; 1)

which we will refer to as elliptic multiple zeta values or eMZV s for short. They furnish a natural
genus-one generalization of standard MZVs5 as defined in eq. (2.6). The shuffle relation eq. (2.19)
can be straightforwardly applied to eMZVs

ω(n1, n2, . . . , nr)ω(k1, k2, . . . , ks) = ω
(
(n1, n2, . . . , nr)� (k1, k2, . . . , ks)

)
, (2.23)

and the parity property eq. (2.17) of the functions f (n) implies the reflection identity

ω(n1, n2, . . . , nr−1, nr) = (−1)n1+n2+...+nrω(nr, nr−1, . . . , n2, n1) . (2.24)

Note that a similar set of ω’s can be defined by an iterated integral along the path from 0 to τ
replacing the integration domain [0, 1] in eq. (2.22). They appear in the modular transformations
of eMZVs and naturally satisfy the properties eqs. (2.23) and (2.24) as well. Likewise, the eIIs
defined in eq. (2.18) allow for a version with integrations on the path from 0 to τ .

Regularization. Among the family of functions f (n)(z) used to define eIIs and eMZVs, only
f (1)(z) has a simple pole at zero and its images under the translations in eq. (2.14). Therefore,
iterated integrals of the form

Γ ( nr ... n2 n1
ar ... a2 a1 ; z) =

∫

0≤zi≤zi+1≤z
f (n1)(z1 − a1)dz1 f

(n2)(z2 − a2)dz2 . . . f
(nr)(zr − ar)dzr (2.25)

5In order to distinguish between eMZVs and MZVs, we will sometimes refer to the latter as standard MZVs.
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with n1 = 1 or nr = 1 need to be regularized if either a1 = 0 or ar = z. As with multiple
polylogarithms, the idea is to slightly move the endpoints of the integration domain by a small
parameter, and then to expand in this parameter. More precisely, one writes the integral

∫

ε≤zi≤zi+1≤z−ε
f (n1)(z1 − a1)dz1 f

(n2)(z2 − a2)dz2 . . . f
(nr)(zr − ar)dzr (2.26)

as a polynomial in ln(−2πiε), where the branch of the logarithm is chosen such that we have
ln(−i) = −πi

2 . The regularized value of eq. (2.26) is then defined to be the constant term in
this expansion. The additional −2πi in the expansion parameter ln(−2πiε) ensures that no
logarithms appear in the limit τ → i∞, and that eMZVs degenerate to MZVs. A thorough
treatment of this degeneration can be found in ref. [24] and will be exploited in ref. [49].

2.2.2 Removing the argument z from the label

As for the multiple polylogarithms, no arguments z are allowed in the labels {a1 . . . ar} in order
to perform the integration using eq. (2.18). Therefore we need to find relations, which trade eIIs
with one or multiple occurrences of the argument z in the label for eIIs where z appears in the
argument exclusively. The key idea for finding those relations is to write the eII as the integral
of its total derivative

Γ ( n1 n2 ... nq ... nr
a1 a2 ... z ... ar ; z) =

∫ z

0
dt d

dt Γ
( n1 n2 ... nq ... nr
a1 a2 ... t ... ar ; t

)
+ lim
z→0

Γ ( n1 n2 ... nq ... nr
a1 a2 ... z ... ar ; z) . (2.27)

This resembles the strategy at genus zero which led to the identity eq. (2.11) between multiple
polylogarithms. In the subsequent, we address additional features and subtleties intrinsic to the
elliptic case. The feasibility of this approach in the elliptic scenario is discussed in ref. [16], see
in particular theorem 26 therein.

Boundary terms. The boundary term at z = 0 usually drops out from eq. (2.27) due to the
vanishing volume of the integration domain. However, the special situation when all nj = 1
leads to the appearance of standard MZVs. As will be elaborated on in section 3, the function
f (1) is the only source of singularities in the integration variables, as can be seen from its leading
behavior f (1)(z) = z−1 +O(z). Hence, the regime z → 0 reproduces multiple polylogarithms as
defined in eq. (2.1):

lim
z→0

Γ
( 1 1 ... 1
a1 a2 ... ar ; z

)
= lim

z→0

∫ z

0

dt1
t1 − a1

∫ t1

0

dt2
t2 − a2

. . .

∫ tr−1

0

dtr
tr − ar

= lim
z→0

G(a1, a2, . . . , ar; z) . (2.28)

If all aj ∈ {0, z}, the scaling relation eq. (2.3) allows to rewrite the polylogarithms in terms of
MZVs (see eq. (2.6)), leading to

lim
z→0

Γ
( n1 n2 ... nr
b1z b2z ... brz ; z

)
= G(b1, b2, . . . , br; 1)

r∏

j=1
δnj ,1 , bj ∈ {0, 1} . (2.29)

Partial derivatives. The total t-derivative in eq. (2.27) can be written in terms of partial
derivatives with respect to the arguments and the labels. This requires the elliptic analogues
of eqns. (A.1) to (A.3) listed below in order to arrive at shorter elliptic polylogarithms. The
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derivative with respect to the argument

∂

∂z
Γ ( n1 n2 ... nr

a1 a2 ... ar ; z) = f (n1)(z − a1) Γ ( n2 ... nr
a2 ... ar ; z) (2.30)

follows straightforwardly from eq. (2.18). Slightly more work using ∂
∂af

(n)(t−a) = − ∂
∂tf

(n)(t−a)
as well as eq. (2.30) is required for derivatives with respect to labels aq. Starting with the special
cases q = 1 and q = r one finds

∂

∂a1
Γ ( n1 n2 ... nr

a1 a2 ... ar ; t0) = −f (n1)(t0 − a1) Γ ( n2 n3 ... nr
a2 a3 ... ar ; t0)

+
∫ t0

0
dt f (n1)(t− a1)f (n2)(t− a2) Γ ( n3 ... nr

a3 ... ar ; t) (2.31)

∂

∂ar
Γ ( n1 n2 ... nr

a1 a2 ... ar ; t0) = f (nr)(−ar) Γ
( n1 n2 ... nr−1
a1 a2 ... ar−1 ; t0

)

−


r−2∏

j=1

∫ tj−1

0
dtj f (nj)(tj − aj)



∫ tr−2

0
dt f (nr−1)(t− ar−1)f (nr)(t− ar) . (2.32)

Deriving with respect to a label aq with q 6= 1, r yields

∂

∂aq
Γ ( n1 n2 ... nr

a1 a2 ... ar ; t0)

=



q−1∏

j=1

∫ tj−1

0
dtj f (nj)(tj − aj)



∫ tq−1

0
dt f (nq)(t− aq)f (nq+1)(t− aq+1) Γ

( nq+2 ... nr
aq+2 ... ar ; t

)

−


q−2∏

j=1

∫ tj−1

0
dtj f (nj)(tj − aj)



∫ tq−2

0
dt f (nq−1)(t− aq−1)f (nq)(t− aq) Γ

( nq+1 ... nr
aq+1 ... ar ; t

)
. (2.33)

Total derivatives. Summing the above partial derivatives with respect to the argument z
and the labels aq, total derivatives from eq. (2.27) can be expressed in a very efficient way. For
a single instance of aq = z, the special cases q = 1 and q = r give rise to

d
dt0

Γ
( n1 n2 ... nr
t0 a2 ... ar ; t0

)
=
∫ t0

0
dt f (n1)(t− t0)f (n2)(t− a2) Γ ( n3 ... nr

a3 ... ar ; t) and (2.34)

d
dt0

Γ
(
n1 ... nr−1 nr
a1 ... ar−1 t0 ; t0

)
= f (n1)(t0 − a1) Γ

(
n2 ... nr−1 nr
a2 ... ar−1 t0 ; t0

)
+ f (nr)(−t0) Γ

( n1 ... nr−1
a1 ... ar−1 ; t0

)

−
(
r−2∏

j=1

∫ tj−1

0
dtj f (nj)(tj − aj)

)∫ tr−2

0
dt f (nr−1)(t− ar−1)f (nr)(t− t0) . (2.35)

For q 6= 1, r, the integrand of eq. (2.27) takes the form

d
dt0

Γ
(
n1 n2 ... nq−1 nq nq+1 ... nr
a1 a2 ... aq−1 t0 aq+1 ... ar ; t0

)
= f (n1)(t0 − a1) Γ

(
n2 ... nq−1 nq nq+1 ... nr
a2 ... aq−1 t0 aq+1 ... ar ; t0

)

+



q−1∏

j=1

∫ tj−1

0
dtj f (nj)(tj − aj)



∫ tq−1

0
dt f (nq)(t− t0)f (nq+1)(t− aq+1) Γ

( nq+2 ... nr
aq+2 ... ar ; t

)
(2.36)

−


q−2∏

j=1

∫ tj−1

0
dtj f (nj)(tj − aj)



∫ tq−2

0
dt f (nq−1)(t− aq−1)f (nq)(t− t0) Γ

( nq+1 ... nr
aq+1 ... ar ; t

)
.

Further examples with repeated appearances of t0 are displayed in appendix B.1.
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Fay identities. Having applied the above derivative identities, one is usually left with expres-
sions containing integrals of the form

∫ z

0
dt f (n1)(t− a1)f (n2)(t− a2) , (2.37)

where the integration variable appears in the argument of more than one function f (n). In the
corresponding situation for multiple polylogarithms, with weights of the form eq. (2.13), one
would have used partial fraction identities

1
(t− a)(t− b) = 1

(t− a)(a− b) + 1
(t− b)(b− a) (2.38)

in order to avoid the repeated appearance of the integration variable t. Analogous relations for
the more general class of weighting functions f (n) are provided by Fay identities, which will be
put in a larger mathematical context in section 3 below. They relate products f (n1)f (n2) at
arguments x, t and x − t and thereby allow to systematically remove repeated appearances of
some integration variable. A simple example of a Fay identity relates products of functions f (1)

to a sum of functions f (2)

f (1)(t− x)f (1)(t) = f (1)(t− x)f (1)(x)− f (1)(t)f (1)(x) + f (2)(t) + f (2)(x) + f (2)(t− x) . (2.39)

The general relation, which is valid for complex arguments x, t as well,

f (n1)(t− x)f (n2)(t) = −(−1)n1f (n1+n2)(x) +
n2∑

j=0

(
n1 − 1 + j

j

)
f (n2−j)(x)f (n1+j)(t− x)

+
n1∑

j=0

(
n2 − 1 + j

j

)
(−1)n1+jf (n1−j)(x)f (n2+j)(t) , (2.40)

in turn allows to remove all repeated occurrences of the variable t. Iterating the above steps,
one can thus eliminate all arguments from the label of any eII recursively.

Result. Combining the Fay identity eq. (2.40) with the total derivatives in eqns. (2.34)
to (2.36) turns (2.27) into a recursive rule for removing the argument z from the label of
Γ ( n1 ... nq ... nr

a1 ... z ... ar ; z). In the equations below, all terms on the right-hand side are either free
of aq = z or have shorter labels. The special cases q = 1 and q = r yield

Γ ( n1 n2 ... nr
z a2 ... ar ; z) = lim

z→0
G(z, a2, . . . , ar; z)

r∏

j=1
δnj ,1 − (−1)n1 Γ

(
n1+n2 0 n3 ... nr
a2 0 a3 ... ar

; z
)

+
n1∑

j=0
(−1)n1+j

(
n2 − 1 + j

j

)
Γ
(
n1−j n2+j n3 ... nr
a2 a2 a3 ... ar ; z

)

+
n2∑

j=0

(
n1 − 1 + j

j

)∫ z

0
dt f (n2−j)(t− a2) Γ

(
n1+j n3 ... nr
t a3 ... ar

; t
)

(2.41)

Γ
( n1 ... nr−1 nr
a1 ... ar−1 z ; z

)
= lim

z→0
G(a1, . . . , ar−1, z; z)

r∏

j=1
δnj ,1 +

∫ z

0
dt f (n1)(t− a1) Γ

(
n2 ... nr−1 nr
a2 ... ar−1 t ; t

)

+ (−1)nr Γ
(
nr n1 ... nr−1
0 a1 ... ar−1 ; z

)
+ (−1)nr Γ

(
nr−1+nr n1 ... nr−2 0
ar−1 a1 ... ar−2 0 ; z

)
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−
nr−1∑

j=0

(
nr − 1 + j

j

)∫ z

0
dt f (nr−1−j)(t− ar−1) Γ

(
n1 ... nr−2 nr+j
a1 ... ar−2 t ; t

)

−
nr∑

j=0

(
nr−1 − 1 + j

j

)
(−1)nr+j Γ

(
nr−j n1 ... nr−2 nr−1+j
ar−1 a1 ... ar−2 ar−1 ; z

)
, (2.42)

while aq = z at a generic position q 6= 1, r can be addressed via

Γ
( n1 n2 ... nq−1 nq nq+1 ... nr
a1 a2 ... aq−1 z aq+1 ... ar ; z

)
= lim

z→0
G(a1, . . . , aq−1, z, aq+1, . . . , ar; z)

r∏

j=1
δnj ,1

+
∫ z

0
dt f (n1)(t− a1) Γ

(
n2 ... nq−1 nq nq+1 ...nr
a2 ... aq−1 t aq+1 ...ar ; t

)

− (−1)nq Γ
(
nq+nq+1 n1 ... nq−1 0 nq+2 ... nr
aq+1 a1 ... aq−1 0 aq+2 ... ar

; z
)

+ (−1)nq Γ
(
nq+nq−1 n1 ... nq−2 0 nq+1 ... nr
aq−1 a1 ... aq−2 0 aq+1 ... ar

; z
)

+
nq+1∑

j=0

(
nq − 1 + j

j

)∫ z

0
dt f (nq+1−j)(t− aq+1) Γ

(
n1 ... nq−1 nq+j nq+2 ... nr
a1 ... aq−1 t aq+2 ... ar

; t
)

+
nq∑

j=0

(
nq+1 − 1 + j

j

)
(−1)nq+j Γ

(
nq−j n1 ... nq−1 nq+1+j nq+2 ... nr
aq+1 a1 ... aq−1 aq+1 aq+2 ... ar ; z

)

−
nq−1∑

j=0

(
nq − 1 + j

j

)∫ z

0
dt f (nq−1−j)(t− aq−1) Γ

(
n1 ... nq−2 nq+j nq+1 ... nr
a1 ... aq−2 t aq+1 ... ar

; t
)

−
nq∑

j=0

(
nq−1 − 1 + j

j

)
(−1)nq+j Γ

(
nq−j n1 ... nq−2 nq−1+j nq+1 ... nr
aq−1 a1 ... aq−2 aq−1 aq+1 ... ar ; z

)
. (2.43)

Situations with multiple successive appearance of aj = z are discussed in appendix B.

Examples. At length one, the reflection identity eq. (2.20) implies that

Γ ( nz ; z) = (−1)n Γ(n; z) , (2.44)

which covers all identities at this length. At length two, cases with n1 = 0 or n2 = 0 are similarly
determined by eq. (2.20), so the simplest non-trivial application of eq. (2.27) is Γ ( 1 1

z 0 ; z). The
differential can be derived via eq. (2.31) and simplified using the Fay identity eq. (2.39) as well
as eq. (2.44),

d
dt Γ ( 1 1

t 0 ; t) = 2 Γ(2; t) + f (2)(t) Γ(0; t)− 2f (1)(t) Γ(1; t) , (2.45)

see eq. (2.21) for the notation on the right hand side. In combination with the boundary term

lim
z→0

Γ ( 1 1
z 0 ; z) = G(1, 0; 1) = ζ2 , (2.46)

we find
Γ ( 1 1

z 0 ; z) = 2 Γ(0, 2; z) + Γ(2, 0; z)− 2 Γ(1, 1; z) + ζ2 , (2.47)

which of course agrees with the general formula eq. (2.41). The same reasoning can be applied
recursively to obtain for example

Γ ( 1 1 1
z 0 0 ; z) = −Γ ( 1 1 1

z z 0 ; z) = −Γ(0, 3, 0; z)− Γ(0, 0, 3; z)− 3 Γ(1, 1, 1; z) + Γ(2, 0, 1; z)
+ Γ(1, 2, 0; z) + 2 Γ(0, 2, 1; z) + 2 Γ(1, 0, 2; z) + ζ2 Γ(1; z)− ζ3 (2.48)

Γ ( 1 0 0 1
z 0 0 0 ; z) = 2 Γ(0, 0, 0, 2; z) + Γ(0, 0, 2, 0; z)− 2 Γ(0, 0, 1, 1; z) + ζ2 Γ(0, 0; z) (2.49)
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as well as

Γ ( 0 1 0 1 0
0 z 0 0 0 ; z) = 2 Γ(0, 0, 0, 2, 0; z) + Γ(0, 2, 0, 0, 0; z)− 2 Γ(0, 1, 0, 1, 0; z) (2.50)

Γ ( 0 1 1 0 0
0 z 0 0 0 ; z) = Γ(0, 0, 2, 0, 0; z) + Γ(0, 0, 0, 2, 0; z) + Γ(2, 0, 0, 0, 0; z)

− Γ(1, 0, 1, 0, 0; z)− Γ(1, 0, 0, 1, 0; z) . (2.51)

In subsection 4.3 these relations turn out to be crucial to express the low energy expansion of
one-loop string amplitudes in terms of eMZVs.

The most general relation at length two following from eq. (2.41) reads

Γ ( n1 n2
z 0 ; z) = −(−1)n1 Γ(n1 + n2, 0; z) +

n2∑

r=0
(−1)n1+r

(
n1 − 1 + r

r

)
Γ(n2 − r, n1 + r; z)

+
n1∑

r=0
(−1)n1+r

(
n2 − 1 + r

r

)
Γ(n1 − r, n2 + r; z) + δn1,1δn2,1ζ2 , (2.52)

and determines Γ ( n1 n2
0 z ; z) through the shuffle identity and eq. (2.44). Analogous relations at

length three can be found in appendix B.3.

2.2.3 Relations among elliptic multiple zeta values

Apart from their application to string amplitudes, the above manipulations of eIIs are instru-
mental to derive relations among eMZVs beyond the obvious reflection and shuffle properties.
By definition eq. (2.22), eIIs with all labels aj = 0 yield eMZVs in the limit z → 1 of their
argument. At the level of labels aj = z, the limit z → 1 is equivalent to aj → 0 since the f (n)

are periodic under z 7→ z + 1, hence

lim
z→1

Γ ( n1 n2 ... nr
a1 a2 ... ar ; z) = ω(nr, . . . , n2, n1) , aj ∈ {0, z} , n1, nr 6= 1 . (2.53)

Note that endpoint divergences caused by the simple pole in f (1) might introduce additional
MZV constants similar to eq. (2.29), that is why the cases n1, nr = 1 are excluded explicitly.

At length two, for example, eq. (2.52) implies the following eMZV identity provided that the
limit z → 1 is non-singular:

ω(n2, n1) = −(−1)n1ω(0, n1 + n2) +
n2∑

r=0
(−1)n1+r

(
n1 − 1 + r

r

)
ω(n1 + r, n2 − r)

+
n1∑

r=0
(−1)n1+r

(
n2 − 1 + r

r

)
ω(n2 + r, n1 − r) , n1, n2 6= 1 . (2.54)

At low weights ni, the coefficients in eq. (2.54) are particularly simple such as

ω(2, 3) = ω(0, 5) , ω(3, 4) = −2ω(0, 7) + ω(2, 5) . (2.55)

Similar procedures can be carried out at higher length. Combining e.g. eq. (B.7) and a suitable
generalization thereof to length four leads to

0 = ω(0, 0, 5) + ω(0, 1, 4) + ω(2, 0, 3) (2.56)
0 = 10ω(0, 0, 0, 5) + 4ω(0, 0, 3, 2) + 2ω(0, 2, 0, 3)− ω(2)ω(0, 3)− ω(0, 5) . (2.57)
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At length five, a combination of eqs. (2.50) and (2.51) with the shuffle relation eq. (2.23) yields

ω(0, 1, 0, 1, 0) = ω(0, 2, 0, 0, 0) (2.58)
ω(0, 1, 1, 0, 0) = ω(2, 0, 0, 0, 0)− ω(2)ω(0, 0, 0, 0) , (2.59)

which will be applied in subsection 4.3.

3 The functions f (n) on the elliptic curve

In this section, we provide the definition and mathematical framework for the functions f (n),
thereby supplementing our heuristic approach in section 2. Before doing so, let us start with
some mathematical motivation, in which we explain in particular why we need – in distinction
to multiple polylogarithms – an infinite number of them.

3.1 Motivation

The importance of multiple polylogarithms as defined in eq. (2.1) becomes evident, when
considering homotopy-invariant iterated integrals on the multiply punctured complex plane
C \ {a1, ..., an}: the value of any such integral evaluated on a path γ depends on the homo-
topy class of the path only and is a C-linear combination of multiple polylogarithms.

Instead of the multiply punctured plane, let us now consider the complex elliptic curve
Eτ = C/(Z + Zτ) with its origin removed (we write this as E×τ ), where Im (τ) > 0. One possible
definition of multiple elliptic polylogarithms is via iterated integrals on E×τ . Writing the canon-
ical coordinate on E×τ as z = s+ rτ with s, r ∈ R, such that r ≡ Im (z)

Im (τ) , two natural differential
forms on E×τ read

dz and ν ≡ 2πidr . (3.1)

These differential forms, however, are not sufficient to describe all iterated integrals on E×τ . Even
worse, iterated integrals employing the differential forms dz and ν only will not be homotopy-
invariant in general, i.e. they will depend on the choice of a path in a given homotopy class.

Both problems are overcome simultaneously by supplementing eq. (3.1) by an infinite tower
of differentials f (n)(z)dz constructed through a generating function [16]6

Ω(z, α, τ) =
∑

n≥0
f (n)(z)αn−1 , (3.2)

where f (0)(z) ≡ 1. In particular, it has been proven in ref. [16] that every iterated integral in
ν and dz can be uniquely lifted to a homotopy-invariant iterated integral over ν and f (n)(z)dz.
Conversely, every homotopy-invariant iterated integral on E×τ arises in this way.

The form of the generating function and its coefficients f (n) in eq. (3.2) can be fixed by
constructing a doubly-periodic connection J satisfying the integrability condition

dJ + J ∧ J = 0 . (3.3)

This requirement singles out a unique completion of J = νX0 + dz X1 + . . . to a formal power
series in non-commuting variables X0 and X1 given by [16]

J = νX0 − adX0Ω(z,−adX0 , τ)(X1)dz . (3.4)
6Note that in ref. [16], Ω(z, α, τ) is defined as a differential form, i.e. includes dz.
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It follows from eq. (3.3) that every word in X0, X1 in the formal power series

∞∑

k=0

∫
Jk (3.5)

is a homotopy-invariant iterated integral on E×τ , and one can prove that in fact every such
iterated integral arises in this way. Therefore, every homotopy invariant iterated integral on
E×τ can be written as a special linear combination of iterated integrals of the differential forms
f (n)(z)dz and ν. The differential form ν eq. (3.1), however, vanishes on the real integration path
γ(t) ∈ R. Hence, the setup in subsection 2.2 based on real variables leads to elliptic multiple
zeta values defined in ref. [17] without referring to the differential form ν.

Although homotopy invariance is generically lost for the iterated integral over the forms
f (n1)(z1)dz1 . . . f (nr)(zr)dzr on the punctured elliptic curve E×τ , its value at the real path [0, 1]
as in eq. (2.22) can in fact be written as a Z-linear combination of coefficients of words in
eq. (3.5), again evaluated on the path [0, 1]. In particular, this shows that the eMZVs associated
with the path [0, 1] [17] are periods of the fundamental group of E×τ .

Hence, the eIIs defined by eq. (2.18) coincide with the elliptic polylogarithms defined in
ref. [16] when restricted to the real line. They can be lifted to honest homotopy-invariant
iterated integrals on the punctured elliptic curve by means of the differential form ν defined
in eq. (3.1). However, generic combinations of f (n)(z)dz accompany several words in X0, X1
in eq. (3.5) and therefore allow for various homotopy-invariant completions using ν. Iterated
integrals over ν and dz, on the other hand, correspond to a single word in eq. (3.5) and therefore
have a unique uplift via f (n≥1)(z)dz towards the elliptic polylogarithms of ref. [16].

3.2 Doubly-periodic functions and generating series

In this section, we define the functions f (n) through a generating series, closely following ref. [16].
In the sequel, z and α are complex coordinates on E×τ . Simultaneously, α will be used as a formal
expansion variable below. The modular parameter often appears in the combination

q ≡ e2πiτ , (3.6)

where Im (τ) > 0 translates into |q| < 1, relevant for convergence issues.

3.2.1 Some doubly-periodic functions

A general reference on doubly-periodic functions is ref. [23]. Let θ1 denote the odd Jacobi
function7 defined by

θ1(z, τ) ≡ 2iq1/8 sin(πz)
∞∏

j=1
(1− qj)

∞∏

j=1
(1− e2πizqj)

∞∏

j=1
(1− e−2πizqj) , (3.7)

subject to the following periodicity properties

θ1(z + 1, τ) = −θ1(z, τ) , θ1(z + τ, τ) = −e−πiτe−2πizθ1(z, τ) . (3.8)
7The subsequent definitions of f (n) are unchanged by z-independent rescalings of θ1. Hence, the current setup

is consistent with refs. [16,50], which rely on θ(z, τ) ≡ 2iq1/12 sin(πz)
∏∞
j=1(1− e2πizqj)

∏∞
j=1(1− e−2πizqj).
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For j ≥ 1 we also define the Eisenstein function Ej(z, τ) and the Eisenstein series ej(τ) by8

Ej(z, τ) ≡
∑

m,n∈Z

1
(z +m+ nτ)j ej(τ) ≡

∑

m,n∈Z
(m,n)6=(0,0)

1
(m+ nτ)j (3.9)

which are related to the function θ1(z, τ) via

∂

∂z
ln(θ1(z, τ)) = E1(z, τ) , ∂

∂z
Ej(z, τ) = −jEj+1(z, τ) . (3.10)

3.2.2 The Eisenstein-Kronecker series

The Eisenstein-Kronecker series F (z, α, τ) is defined by [51,16]

F (z, α, τ) ≡ θ′1(0, τ)θ1(z + α, τ)
θ1(z, τ)θ1(α, τ) , (3.11)

where ′ denotes a derivative with respect to the first argument. Taking the logarithmic derivative
of eq. (3.11) together with the Taylor expansion E1(α, τ) = 1

α −
∑∞
j=0 α

jej+1(τ) leads to the
following alternative representation [52,50]

F (z, α, τ) = 1
α

exp


−

∑

j≥1

(−α)j
j

(Ej(z, τ)− ej(τ))


 (3.12)

in terms of the Eisenstein functions and Eisenstein series defined in eq. (3.9). The periodicity
properties of the θ1-function in eq. (3.8) imply that the Eisenstein-Kronecker series is quasi-
periodic,

F (z + 1, α, τ) = F (z, α, τ), F (z + τ, α, τ) = e−2πiαF (z, α, τ) . (3.13)

Moreover, the representation (3.12) together with the Fay trisecant equation [53] yields the Fay
identity

F (z1, α1, τ)F (z2, α2, τ) = F (z1, α1 + α2, τ)F (z2 − z1, α2, τ)
+ F (z2, α1 + α2, τ)F (z1 − z2, α1, τ) . (3.14)

3.2.3 Restoring double periodicity and modularity

The quasi-periodicity of the Eisenstein-Kronecker series under z → z + τ as given in eq. (3.13)
can be lifted to an honest periodic behavior by defining

Ω(z, α, τ) ≡ exp
(

2πiα Im (z)
Im (τ)

)
F (z, α, τ) . (3.15)

Clearly, the resulting function Ω(z, α, τ) is doubly-periodic in z,

Ω(z + 1, α, τ) = Ω(z + τ, α, τ) = Ω(z, α, τ) , (3.16)
8The two cases j = 1, 2 require the Eisenstein summation prescription

∑

m,n∈Z
am,n ≡ lim

N→∞
lim
M→∞

N∑

n=−N

M∑

m=−M
am,n .
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and holomorphicity of the Eisenstein-Kronecker series eq. (3.11) gives rise to the differential
equation

∂

∂z̄
Ω(z, α, τ) = − πα

Im (τ)Ω(z, α, τ) . (3.17)

The latter implies that the connection J in eq. (3.4) satisfies the integrability condition eq. (3.3)
and generates homotopy-invariant iterated integrals via the formal power series eq. (3.5) [16].

Upon taking the exponential in eq. (3.15) into account, the modular transformation proper-
ties of the Eisenstein-Kronecker series [52,54], can be translated into

Ω
(

z

cτ + d
,

α

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)Ω(z, α, τ) (3.18)

for
(
a b
c d

) ∈ SL(2,Z). The Fay identity eq. (3.14) for the Eisenstein-Kronecker series carries over
to

Ω(z1, α1, τ)Ω(z2, α2, τ) = Ω(z1, α1 + α2, τ)Ω(z2 − z1, α2, τ)
+ Ω(z2, α1 + α2, τ)Ω(z1 − z2, α1, τ) (3.19)

after multiplication with exp
( 2πi

Im (τ)
[
α1Im (z1) + α2Im (z2)

])
.

3.3 Definition and properties of the weighting functions f (n)

3.3.1 Definition of f (n)

We define the functions f (n) entering the eIIs eq. (2.18) through the following Taylor series in α,

αΩ(z, α, τ) ≡
∞∑

n=0
f (n)(z, τ)αn . (3.20)

They are real analytic on the punctured elliptic curve E×τ . As above, we will omit the argument
τ and write f (n)(z) or often simply f (n). Their explicit form is conveniently captured by the
following functions9 En

E1(z, τ) ≡ E1(z, τ) + 2πi Im (z)
Im (τ) , En(z, τ) ≡ (−1)n

(
en(τ)− En(z, τ)

) ∀ n ≥ 2 . (3.21)

These functions result in a simple representation of the generating series

αΩ(z, α, τ) = exp



∞∑

j=1

αj

j
Ej(z, τ)


 , (3.22)

and allow for a combinatorial interpretation of f (n)(z, τ) in terms of the cycle index of the
symmetric group Sn (see appendix D).

Comparison with eq. (3.20) yields the following expressions for the lowest functions f (n)

f (1) = E1

f (2) = 1
2
(E2

1 + E2
)

9Note that all En are meromorphic except for E1 (due to the term Im (z)), and that E2(z) = −℘(z) is the
Weierstrass function. Higher functions En at n ≥ 3 are related to derivatives of the Weierstrass function, e.g.
E3 = − 1

2∂℘ and E4 = e4 − 1
6∂

2℘.
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f (3) = 1
3!
(E3

1 + 3E1E2 + 2E3
)

(3.23)

f (4) = 1
4!
(E4

1 + 6E2
1E2 + 8E1E3 + 3E2

2 + 6E4
)

f (5) = 1
5!
(E5

1 + 10E3
1E2 + 20E2

1E3 + 15E1E2
2 + 30E1E4 + 20E2E3 + 24E5

)
.

The functions Ej can be expressed in terms of ln θ1 via eq. (3.10), which leads to the representa-
tions for f (1) and f (2) provided in eqs. (2.15) and (2.16). As shown in appendix D, the general
expression for f (n) following from eq. (3.22) reads

f (n) =
∑

a1,a2,...,an≥0
δ

(
n∑

i=1
iai − n

)
n∏

j=1

Eajj
jajaj !

, (3.24)

and an equivalent recursive representation is given by

f (n) = 1
n

n∑

j=1
Ejf (n−j) . (3.25)

3.3.2 Properties of f (n)

The functions f (n) inherit their double periodicity, the form of their antiholomorphic derivative as
well as their behavior under modular transformations from the generating series in eqns. (3.16),
(3.17) and (3.18):

f (n)(z + 1) = f (n)(z + τ) = f (n)(z) (3.26)
∂f (n)(z)
∂z̄

= − π

Im (τ)f
(n−1)(z) (3.27)

f (n)
( z

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)nf (n)(z, τ) . (3.28)

Likewise, the Fay identity eq. (3.19) implies for f (n)
ij ≡ f (n)(zi − zj):

f
(m−1)
il f

(n)
jl + f

(m)
il f

(n−1)
jl =

n∑

r=0

(
m− 1 + r

r

)
f

(n−r)
ji f

(m−1+r)
il +

m∑

r=0

(
n− 1 + r

r

)
f

(m−r)
ij f

(n−1+r)
jl .

(3.29)

This identity has been used repeatedly to derive relations among eIIs in section 2 (cf. eq. (2.40)
above).

Given the singular factor θ′1(0,τ)
θ1(z,τ) = 1

z + O(z) in the Eisenstein-Kronecker series eq. (3.11),
one can check that the residue at the simple pole of Ω at the origin is independent on α. Hence,
only f (1) has a simple pole at any z = k + τ l for k, l ∈ Z whereas all other weighting functions
f (n6=1) are regular on the entire elliptic curve:

lim
z→0

zf (n)(z) = δn,1 . (3.30)

It is this property of the functions f (n), which is responsible for the z → 0 behavior stated in
eq. (2.29).
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3.3.3 q-expansions of f (n)

The Eisenstein-Kronecker series eq. (3.11) is known to have the following power-series expansion
in q = e2πiτ [23, 16]

αF (z, α, τ) = 1 + πα cot(πz)− 2
∞∑

k=1
ζ2kα

2k − 2πiα
∞∑

m,n=1

(
e2πi(mz+nα) − e−2πi(mz+nα)

)
qmn

≡
∞∑

n=0
g(n)(z)αn . (3.31)

Disentangling the powers of α yields the holomorphic parts g(n) of the functions f (n), e.g.

g(1)(z) = π cot(πz) + 4π
∞∑

m=1
sin(2πmz)

∞∑

n=1
qmn (3.32)

g(2)(z) = −2ζ2 + 8π2
∞∑

m=1
cos(2πmz)

∞∑

n=1
nqmn (3.33)

g(3)(z) = −8π3
∞∑

m=1
sin(2πmz)

∞∑

n=1
n2qmn , (3.34)

where cot(πz) = 1
πz +O(z) captures the simple pole of f (1). More generally, we find

g(k)(z)
∣∣∣
k=2,4,...

= −2
[
ζk + (2πi)k

(k − 1)!

∞∑

m=1
cos(2πmz)

∞∑

n=1
nk−1qmn

]
(3.35)

g(k)(z)
∣∣∣
k=3,5,...

= −2i (2πi)k
(k − 1)!

∞∑

m=1
sin(2πmz)

∞∑

n=1
nk−1qmn . (3.36)

The non-holomorphic piece in f (n) consisting of factors Im (z)
Im (τ) can be immediately restored via

f (n)(z) =
n∑

k=0

[
2πiIm (z)

]k

k!
[
Im (τ)

]k g
(n−k)(z) . (3.37)

Even though the functions f (n) in the definition eq. (2.18) of eIIs are evaluated at real arguments
in the subsequent, we will keep track of the admixtures of Im (z) in eq. (3.37) for further
applications beyond this work. For example, another system of eIIs and eMZVs can be defined
for the path from 0 to τ instead of the real interval [0, 1] whose properties are crucially affected
by the factors of Im (z) and the resulting modular properties.

4 The one-loop four-point amplitude in open string theory

Iterated integrals defined on an elliptic curve in subsection 2.2 appear naturally in superstring
theory. Calculating one-loop scattering amplitudes among open string states amounts to eval-
uating iterated integrals weighted by the functions f (n) defined in section 3. Accordingly, the
expansion of one-loop superstring amplitudes in the inverse string tension α′ involves eMZVs.

The α′-expansion of tree-level amplitudes in open string theory is well known to involve
standard MZVs, see e.g. ref. [34]. The pattern of their appearance is much simpler as compared
to the MZVs and polylogarithms in loop amplitudes of field theory and can be understood in
terms of motivic MZVs [29] as well as the Drinfeld associator [38]. Hence, it is not surprising
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Re (z)

Im (z)

× × ×
z2 z3 zN· · · |

1

−t
2

−t

= =

||

||

Figure 1: Parametrization of the cylinder worldsheet through the shaded region. The boundary under
investigation has real coordinates zj ∈ [0, 1]. The identified edges inherited from the underlying torus at
τ = it are marked by = and ||, respectively.

that one-loop string amplitudes furnish a perfect laboratory to study patterns and properties of
eMZVs.

Iterated integrals in one-loop open string amplitudes occur on the boundaries of a two-
dimensional worldsheet of either cylinder or Möbius-strip topology [40]. They describe confor-
mally inequivalent configurations of inserting open string states on the respective boundaries.
As a first field of application for eMZVs, we will entirely focus on cylindrical worldsheets in
this work with all integrations confined to one boundary10. As shown in figure 1, this situation
can be described by a torus with purely imaginary modular parameter τ = it with t ∈ R. The
cylinder boundaries are then parametrized by Re (zj) ∈ [0, 1] with Im (zj) = 0 and Im (zj) = t

2 ,
respectively. The configuration of interest with one boundary empty is captured by real insertion
points zj ∈ R.

4.1 The four-point amplitude

For massless open-string excitations in ten dimensions – gluons and gluinos – supersymmetry
requires at least four external states for a non-vanishing one-loop amplitude, so the simplest
case to be studied below is the four-point function [58,59],

A1-loop
string (1, 2, 3, 4) = s12s23A

tree
YM(1, 2, 3, 4)

∫ ∞

0
dt I4pt(1, 2, 3, 4) (4.1)

I4pt(1, 2, 3, 4) ≡
∫ 1

0
dz4

∫ z4

0
dz3

∫ z3

0
dz2

∫ z2

0
dz1 δ(z1)

4∏

j<k

exp
[
sjkPjk

]
. (4.2)

The entire polarization dependence is captured by the four-point tree amplitude of sYM field
theory, see [60] for its tensor structure. The worldsheet integral I4pt(1, 2, 3, 4) depends on the
external momenta ki through dimensionless Mandelstam invariants

sij ≡ α′(ki + kj)2 , (4.3)
10The interplay between open string worldsheets of different topologies is crucial for the cancellations of infinities

[55] and anomalies [56,57] which occur for gauge group SO(32).
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where momentum conservation and the mass-shell condition k2
i = 0 leave two independent sij ,

s34 = s12 , s14 = s23 , s13 = s24 = −s12 − s23 . (4.4)

The dependence on worldsheet positions zj ∈ [0, 1] enters through the genus-one Green function

Pij ≡ ln
∣∣∣∣
θ1(zi − zj , τ)
θ′1(0, τ)

∣∣∣∣
2
− 2π

Im (τ)
[
Im (zi − zj)

]2 (4.5)

which is related to the singular function f
(1)
ij ≡ f (1)(zi − zj) in eq. (2.15) via

∂Pij = f
(1)
ij , Pij =

∫ zi

zj

dw f (1)(w − zj) . (4.6)

The endpoint divergence as w → zj can be dealt with through the regularization prescrip-
tion eq. (2.26) which heuristically amounts to limzi→zj Pij = 0. Note that the dependence of
I4pt(1, 2, 3, 4) on sij and q ≡ e−2πt is suppressed for ease of notation.

The non-holomorphic piece in f (1)(z) ≡ ∂ ln θ1(z, τ) + 2πi Im z
Im τ drops out for the present

cylinder parametrization where all vertices are inserted on the boundary with real coordinates zj .
Accordingly, the differential form ν ∼ d Im (z) in eq. (3.1) required for homotopy invariance does
not contribute to the cylinder integrals under consideration. However, the admixtures of Im z

Im τ in
f (n) are crucial for modular invariance of closed-string amplitudes and cylinder diagrams with
open string states on both boundaries.

Translation invariance on genus-one surfaces can be used to fix z1 = 0. In addition, the
N -point integration measure which appears for N = 4 in eq. (4.2),

∫

12...N
≡
∫ 1

0
dzN

∫ zN

0
dzN−1 . . .

∫ z3

0
dz2

∫ z2

0
dz1 δ(z1) , (4.7)

is invariant under cyclic shifts zi → zi+1 modN and, up to a sign (−1)N , under reflection zi →
zN+1−i. Some features of the one-loop N -point amplitudes are discussed in section 5. Their
integrand then involves factors of f (wi)(zj − zk) with overall weight ∑iwi = N − 4.

As another generalization of the one-loop amplitude eq. (4.1) in ten spacetime dimensions,
one could consider supersymmetry-preserving compactifications on a torus. For each circular
dimension of radius R, the associated momentum components are quantized and contribute a
correction factor of ∑∞n=−∞ e

−n2πtR2/α′ to the t-integrand [61]. Since this does not affect the
zj-integrations within I4pt(1, 2, 3, 4) and the resulting eMZVs, the subsequent results on the
α′-expansion are universal for any torus compactification to spacetime dimensions D ≤ 10.

4.2 The α′-expansion

In this section, we investigate the α′-expansion of the t-integrand in eq. (4.1),

I4pt(1, 2, 3, 4) =
∫

1234

4∏

i<j

∞∑

nij=0

1
nij !

(sijPij)nij , (4.8)

which encodes the low-energy effective action for the gluon supermultiplet. Expanding in α′

amounts to Taylor expanding the exponential in eq. (4.2) in all the Mandelstam invariants sij
defined in eq. (4.3) as well as the corresponding worldsheet Green function Pij given by eq. (4.6).

In addition to the power-series expansion in α′ discussed in the subsequent, the integration
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region of large t in the amplitude eq. (4.1) gives rise to logarithmic, non-analytic momentum
dependence. The associated threshold singularities in sij are for instance crucial to make contact
with the Feynman box integral in the sYM amplitude arising in the point-particle limit [61].
Mimicking the low energy-analysis of closed string one-loop amplitudes [62–65], we separate the
analytic from the non-analytic parts of the amplitude and do not keep track of the non-analytic
threshold singularities.

The simplest monomials in Pij inequivalent under cyclic shifts and reflections of the vertex
positions zj integrate to

c0 ≡
∫

1234
1 , c1

1 ≡
∫

1234
P12 , c1

2 ≡
∫

1234
P13 . (4.9)

At second and third order in α′ one finds

c2
1 ≡

1
2

∫

1234
P 2

12 , c23 ≡
∫

1234
P12P14 , c2

5 ≡
∫

1234
P12P34

c2
2 ≡

1
2

∫

1234
P 2

13 , c24 ≡
∫

1234
P13P24 , c2

6 ≡
∫

1234
P12P13 (4.10)

as well as

c3
1 ≡

1
6

∫

1234
P 3

12 , c3
5 ≡

1
2

∫

1234
P 2

12P34 , c3
9 ≡

∫

1234
P12P13P23

c3
2 ≡

1
6

∫

1234
P 3

13 , c3
6 ≡

1
2

∫

1234
P 2

12P13 , c310 ≡
∫

1234
P12P13P14

c3
3 ≡

1
2

∫

1234
P 2

12P23 , c37 ≡
1
2

∫

1234
P12P

2
13 , c311 ≡

∫

1234
P12P34P13

c3
4 ≡

1
2

∫

1234
P 2

13P24 , c38 ≡
∫

1234
P12P23P34 , c312 ≡

∫

1234
P13P24P12 . (4.11)

As will be demonstrated in section 4.3, eMZVs defined in eq. (2.22) are the natural language
to describe the above cji and to understand the linear combinations appearing after applying
momentum conservation eq. (4.4):

I4pt(1, 2, 3, 4) = c0 + 2(c1
1 − c1

2) (s12 + s23) + (2c2
1 + 2c2

2 − c2
3 − c2

4)
(
s2

12 + 1
4s12s23 + s2

23
)

+ 1
4 (−2c2

1 + 14c2
2 + c2

3 − 7c2
4) s12s23 + 2 (c3

10 − 2c3
1 − c3

2 + 2c3
3 + c3

4 − 2c3
9) s12s23(s12 + s23)

+ (2c3
10 + 2c3

1 − 2c3
2 + 6c3

3 + 2c3
4 − 8c3

6 − 2c3
8) (s12 + s23)(s2

12 + s12s23 + s2
23) + O(α′4) . (4.12)

A first flavor of relations among cji (and thus ultimately among eMZVs) can be obtained by
exploiting cyclic and reflection properties of five-point integrals such as
∫

12345
P45∂2P23 =

∫

12345
P51∂2P23 ⇒

∫

1345
P45P13 =

∫

1345
P51P13 ⇒ c2

3 = c2
5 , (4.13)

see eq. (4.7) for the measure
∫

12345. Similar methods imply that

2c2
6 = c2

3 + c2
4 , c3

3 = c3
5 , c3

10 = c3
11 , c3

7 + c3
6 = c3

3 + c3
4 , c3

11 + c3
10 = c3

8 + c3
12 , (4.14)

these relations have been used to eliminate c2
5, c

2
6 as well as c3

5, c
3
7, c

3
12, c

3
11 from eq. (4.12).

Note that the α′-expansion of closed string one-loop amplitudes has been analyzed along
similar lines in refs. [62–65]. Since each closed-string insertion point zj is integrated over the
entire torus Eτ , integrals involving propagators with a free endpoint vanish and therefore much
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fewer closed-string counterparts of the coefficients cji arise.

4.3 Elliptic multiple zeta values

In this section we convert the constituents of the α′-expansion, cji defined by eqns. (4.9), (4.10)
and (4.11), to eMZVs. This will provide a characterization of the particular linear combinations
of cji which appear in eq. (4.12) along with various powers of s12 and s23.

The leading term c0 in eq. (4.9) can be straightforwardly evaluated to yield 1
6 and furnishes

a special case of
ω(0, 0, . . . , 0︸ ︷︷ ︸

n

) = 1
n! , (4.15)

which follows from multiple insertions of 1 = f (0)(zi). Nevertheless, it will prove instructive for
the comparison with higher orders in α′ to express c0 as an unevaluated eMZV:

c0 =
∫ 1

0
f (0)(z4) dz4

∫ z4

0
f (0)(z3) dz3

∫ z3

0
f (0)(z2) dz2

= Γ(0, 0, 0; 1) = ω(0, 0, 0) . (4.16)

Below, we will repeatedly apply the definitions eq. (2.18) and eq. (2.22) of eIIs and eMZVs,
respectively, in order to express the other integrals cji in the same fashion.

4.3.1 First order in Pij: integrals c1
i

At linear order in sij , we substitute P1j =
∫ zj

0 f (1)(w) dw according to eq. (4.6) and z1 = 0 into
the definitions eq. (4.9) and find

c1
1 =

∫ 1

0
f (0)(z4) dz4

∫ z4

0
f (0)(z3) dz3

∫ z3

0
f (0)(z2) dz2

∫ z2

0
f (1)(w) dw

= Γ(0, 0, 0, 1; 1) = ω(1, 0, 0, 0) (4.17)

c1
2 =

∫ 1

0
f (0)(z4) dz4

∫ z4

0
f (0)(z3) dz3

∫ z3

0
f (0)(z2) dz2

∫ z3

0
f (1)(w) dw

=
∫ 1

0
f (0)(z4) dz4

∫ z4

0
f (0)(z3) dz3 Γ(0; z3) Γ(1; z3)

=
∫ 1

0
f (0)(z4) dz4

∫ z4

0
f (0)(z3) dz3

[
Γ(1, 0; z3) + Γ(0, 1; z3)

]

= Γ(0, 0, 0, 1; 1) + Γ(0, 0, 1, 0; 1) = ω(1, 0, 0, 0) + ω(0, 1, 0, 0) . (4.18)

The second line of eq. (4.18) makes use of the shuffle product eq. (2.19) for eIIs. Equivalence of
eq. (4.17) with the cyclically shifted integrand

∫

1234
P14 =

∫ 1

0
f (0)(z4) dz4

∫ z4

0
f (0)(z3) dz3

∫ z3

0
f (0)(z2) dz2

∫ z4

0
f (1)(w) dw

= ω(1, 0, 0, 0) + ω(0, 1, 0, 0) + ω(0, 0, 1, 0) (4.19)

can be checked using antisymmetry ω(0, 1, 0, 0) + ω(0, 0, 1, 0) = 0 following from eq. (2.24).
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4.3.2 Second order in Pij: integrals c2
i

At quadratic order in sij , the rewriting P1j =
∫ zj

0 f (1)(w) dw = − ∫ 1
zj
f (1)(w) dw allows to

straightforwardly address any quadratic monomial in P12, P13, P14 along the lines of eqs. (4.17)
and (4.18):

c2
1 = ω(1, 1, 0, 0, 0) (4.20a)
c2

2 = ω(1, 1, 0, 0, 0) + ω(1, 0, 1, 0, 0) + ω(0, 1, 1, 0, 0) (4.20b)
c2

3 = −ω(1, 0, 0, 0, 1) (4.20c)
c2

6 = 2ω(1, 1, 0, 0, 0) + ω(1, 0, 1, 0, 0) . (4.20d)

Then, eqs. (4.13) and (4.14) can be used to determine the remaining two c2
j in eq. (4.10):

c2
4 = 2ω(1, 1, 0, 0, 0) + ω(1, 0, 1, 0, 0)− ω(1, 0, 0, 1, 0) (4.21a)
c2

5 = −ω(1, 0, 0, 0, 1) . (4.21b)

Note that the integration limits
∫ zj

0 . . . in the representation of P1j can be traded for − ∫ 1
zj
. . ..

This is equivalent to applying a shuffle relation eq. (2.23),

0 = ω(1)ω(1, 0, 0, 0) = 2ω(1, 1, 0, 0, 0) + ω(1, 0, 1, 0, 0) + ω(1, 0, 0, 1, 0) + ω(1, 0, 0, 0, 1) (4.22)
0 = ω(1)ω(0, 1, 0, 0) = ω(1, 0, 1, 0, 0) + 2ω(0, 1, 1, 0, 0) + ω(0, 1, 0, 1, 0) + ω(0, 1, 0, 0, 1) , (4.23)

where ω(1) vanishes by the reflection identity eq. (2.24).

4.3.3 Integration techniques for P23, P24, P34

Green functions Pij where both indices describe a leg to be integrated (legs 2, 3, 4) are more
difficult to integrate. Their integral representation eq. (4.6) inevitably gives rise to iterated
integrals Γ ( n1 ... nr

a1 ... ar ; z) with the argument appearing in the labels, that is ai = z. Integration
over z3 and z4 then requires the techniques of subsection 2.2.2, in particular the recursion
formulæ eq. (2.41) to eq. (2.43).

The simple corollary Γ ( 1 0
z 0 ; z) = −Γ ( 0 1

0 0 ; z) of the reflection identity eq. (2.20) is sufficient
to integrate P23 and to reproduce eq. (4.17) from a different cyclic representative. The quadratic
case c2

5 =
∫
1234 P12P34, on the other hand, requires more effort. One obtains

∫

1234
P12P34 = −

∫ 1

0
f (0)dz4

∫ z4

0
f (1)(w − z4)dw

∫ w

0
f (0)dz3

∫ z3

0
f (0)dz2

∫ z2

0
f (1)(u)du

= −
∫ 1

0
f (0)(z4)dz4 Γ

( 1 0 0 1
z4 0 0 0 ; z4

)

= 2ω(1, 1, 0, 0, 0)− 2ω(2, 0, 0, 0, 0)− ω(0, 2, 0, 0, 0)− ζ2ω(0, 0, 0) , (4.24)

where Γ
( 1 0 0 1
z4 0 0 0 ; z4

)
has been reexpressed via eq. (2.49) in the last step. In order to reproduce

the result of eq. (4.21b), −ω(1, 0, 0, 0, 1), one needs to combine the shuffle relations eqs. (4.22)
and (4.23) with eqs. (2.58) and (2.59). The desired result then follows from the constant eMZVs
in eq. (4.15) and ω(2) = −2ζ2 which is a special case of

ω(n) =
{
−2ζn : n even

0 : n odd . (4.25)
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The expression for ω(n) can be inferred from order q0 in the expansions eqs. (3.35) and (3.36).

4.3.4 Third order in Pij: integrals c3
i

Starting from the third order in Mandelstam variables, relations such as eq. (4.14) are no longer
sufficient to reduce the complete list of c3

i in eq. (4.11) to elementary integrals over monomials
in P12, P13 and P14. Instead, the inevitable factors of P23, P24 and P34 require the procedure
described in eq. (4.24) together with the recursive identities eq. (2.41) to (2.43) in order to
rearrange the labels of the eIIs. This allows to reduce integrals over arbitrary monomials in Pij
with 1 ≤ i < j ≤ 4 to eMZVs. The integrals c3

i , which are cubic in Pij , give rise to

c3
1 = ω(1, 1, 1, 0, 0, 0) (4.26a)
c3

2 = ω(1, 1, 1, 0, 0, 0) + ω(1, 1, 0, 1, 0, 0) + ω(1, 0, 1, 1, 0, 0) + ω(0, 1, 1, 1, 0, 0) (4.26b)
c3

3 = −ω(1, 1, 0, 0, 0, 1) (4.26c)
c3

4 = 6ω(1, 1, 1, 0, 0, 0) + 3ω(1, 1, 0, 1, 0, 0) + ω(1, 0, 1, 1, 0, 0) + ω(1, 1, 0, 0, 0, 1) (4.26d)
c3

5 = −ω(1, 1, 0, 0, 0, 1) (4.26e)
c3

6 = 3ω(1, 1, 1, 0, 0, 0) + ω(1, 1, 0, 1, 0, 0) (4.26f)
c3

7 = 3ω(1, 1, 1, 0, 0, 0) + 2ω(1, 1, 0, 1, 0, 0) + ω(1, 0, 1, 1, 0, 0) (4.26g)
c3

8 = 2ω(2, 0, 0, 0, 0, 1) + ω(0, 2, 0, 0, 0, 1)− 2ω(1, 1, 0, 0, 0, 1)− ζ2ω(1, 0, 0, 0) (4.26h)
c3

9 = 2ω(2, 0, 0, 0, 1, 0) + 2ω(2, 0, 0, 0, 0, 1) + ω(0, 2, 0, 0, 1, 0) + ω(0, 2, 0, 0, 0, 1)
− 2ω(1, 1, 0, 0, 1, 0)− 2ω(1, 1, 0, 0, 0, 1)− ζ2ω(1, 0, 0, 0)− ζ2ω(0, 1, 0, 0) (4.26i)

c3
10 = −2ω(1, 1, 0, 0, 0, 1)− ω(1, 0, 1, 0, 0, 1) (4.26j)
c3

11 = −2ω(1, 1, 0, 0, 0, 1)− ω(1, 0, 1, 0, 0, 1) (4.26k)
c3

12 = −2ω(2, 0, 0, 0, 0, 1)− ω(0, 2, 0, 0, 0, 1) + ζ2ω(1, 0, 0, 0)
− 2ω(1, 0, 1, 0, 0, 1)− 2ω(1, 1, 0, 0, 0, 1) , (4.26l)

where the occurrences of ζ2 can be traced back to eq. (2.47).

4.3.5 Assembling the results

Momentum conservation only admits particular linear combinations of cji in the four-point am-
plitude eq. (4.12). It turns out that for all cases considered divergent eMZVs with the singular
integrand f (1) in the first or last position drop out. Up to third order in sij , we have

I4pt(1, 2, 3, 4) = ω(0, 0, 0) − 2ω(0, 1, 0, 0) (s12 + s23) + 2ω(0, 1, 1, 0, 0)
(
s2

12 + s2
23
)

(4.27)
− 2ω(0, 1, 0, 1, 0) s12s23 + β5 (s3

12 + 2s2
12s23 + 2s12s

2
23 + s3

23) + β2,3 s12s23(s12 + s23) + O(α′4)

with

β5 = 4
3
[
ω(0, 0, 1, 0, 0, 2) + ω(0, 1, 1, 0, 1, 0)− ω(2, 0, 1, 0, 0, 0)− ζ2ω(0, 1, 0, 0)

]
(4.28)

β2,3 = 1
3ω(0, 0, 1, 0, 2, 0)− 3

2ω(0, 1, 0, 0, 0, 2)− 1
2ω(0, 1, 1, 1, 0, 0)

− 2ω(2, 0, 1, 0, 0, 0)− 4
3ω(0, 0, 1, 0, 0, 2)− 10

3 ζ2ω(0, 1, 0, 0) , (4.29)

and the pattern at higher orders is under investigation. The above expressions for β5 and β2,3
are obtained using various eMZV relations using the methods of subsection 2.2.3.
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4.4 On the q-expansion of eMZVs and the string amplitude

The evaluation of eMZVs as initiated in eq. (4.15) and eq. (4.25) will be pursued systematically
in [49,66,67]. In this section, we give a glimpse of non-trivial q-dependence in simple cases and
provide consistency checks for the constant piece of the low energy expansion eq. (4.27) of the
four-point amplitude.

4.4.1 The simplest q-expansions

To determine the q-expansions of the simplest eMZVs, we start from the expansions of f (1) and
f (2) spelled out in eq. (3.37), which in turn is based on eqs. (3.32) and (3.33). Using the integrals
in appendix C, we arrive at

ω(0, 1, 0, 0) = ζ3
8ζ2

+ 3
2π2

∞∑

m,n=1

1
m3 q

mn (4.30)

as well as

ω(0, 1, 1, 0, 0) = ζ2
15 −

1
2π2

∞∑

m,n=1

n

m4 q
mn + 1

3

∞∑

m,n=1

n

m2 q
mn (4.31)

ω(0, 1, 0, 1, 0) = − ζ2
60 + 2

π2

∞∑

m,n=1

n

m4 q
mn − 1

3

∞∑

m,n=1

n

m2 q
mn . (4.32)

A systematic method is under investigation and will appear in [67]. Note that the q-dependence
of all the examples above can be expressed in terms of the function ELin,m introduced in section 8
of ref. [11] at arguments x = y = 1.

4.4.2 The constant piece of eMZVs and the α′-derivative

The t-integration in the four-point amplitude eq. (4.1) is divergent unless the choice of gauge
group SO(32) leads to cancellations between the cylinder and the Möbius-strip diagram [55].
The divergence is interpreted as a zero-momentum dilaton propagating to the vacuum and
therefore proportional to the derivative of the tree level amplitude with respect to α′ [58]. The
latter is given by

Atree
string(1, 2, 3, 4) = Γ(1 + s12)Γ(1 + s23)

Γ(1 + s12 + s23) Atree
YM(1, 2, 3, 4) (4.33)

with α′-expansion

Γ(1 + s12)Γ(1 + s23)
Γ(1 + s12 + s23) = exp

{ ∞∑

k=2
(−1)k ζk

k

[
sk12 + sk23 − (s12 + s23)k

]
}

= 1− ζ2s12s23 + ζ3s12s23(s12 + s23)− ζ4s12s23
(
s2

12 + 1
4s12s23 + s2

23
)

(4.34)
− ζ5s12s23(s3

12 + 2s2
12s23 + 2s12s

2
23 + s3

23)− ζ2ζ3(s12s23)2(s12 + s23) +O(α′6) .

In the representation of the one-loop amplitude given in eq. (4.27), the divergence originates
from the constant part of the eMZVs’ power series expansion in q = e2πiτ = e−2πt. A systematic
method to extract the constant term of eMZVs will be described in ref. [49]. The resulting

25

Appendix C. Elliptic multiple zeta values and one-loop superstring amplitudes

136



divergence in the above result is given by

A1-loop
string (1, 2, 3, 4)

∣∣∣
div

= s12s23A
tree
YM(1, 2, 3, 4) I4pt(1, 2, 3, 4)

∣∣∣
q0

= 1
2π2 s12s23A

tree
YM(1, 2, 3, 4)

{
2ζ2 − 3ζ3(s12 + s23) + 4ζ4

(
s2

12 + 1
4s12s23 + s2

23
)

(4.35)

− 5ζ5(s3
12 + 2s2

12s23 + 2s12s
2
23 + s3

23) + 5ζ2ζ3s12s23(s12 + s23) +O(α′4)
}
,

which is consistent with the α′-derivative of the tree amplitude [58] upon comparison with
eq. (4.34),

A1-loop
string (1, 2, 3, 4)

∣∣∣
div

= − α′

2π2
∂

∂α′
Atree

string(1, 2, 3, 4) . (4.36)

5 Multi-particle one-loop string amplitudes and f (n)

This section is devoted to one-loop amplitudes involving five and more open string states. We
firstly provide the five-point extension of the four-point α′-expansion in eq. (4.27). It is secondly
demonstrated that the doubly-periodic functions f (n) defined in section 3 naturally enter the
calculation of one-loop amplitudes with any number of external legs.

5.1 The five-point open string amplitude

In the same way as the four-point open string amplitude in eq. (4.1) allows to factor out the
polarization dependence via Atree

YM(1, 2, 3, 4), one can express the five-point string amplitude in
a basis of color-ordered trees of YM theory [68]. BCJ relations [69] single out two independent
subamplitudes Atree

YM(1, ρ(2, 3), 4, 5) with permutation ρ ∈ S2, and for convenience, we consider
the same color orderings in the one-loop string theory counterparts:

A1-loop
string (1, σ(2, 3), 4, 5) =

∫ ∞

0
dt

∑

ρ∈S2

I5pt(σ|ρ)Atree
YM(1, ρ(2, 3), 4, 5) . (5.1)

The 2 × 2 matrix I5pt(σ|ρ) is the generalization of the four-point scalar integral I4pt(1, 2, 3, 4).
It can be assembled from the kinematic factors which were simplified in ref. [68] using the pure
spinor formalism [70],

∑

ρ∈S2

I5pt(1|ρ)Atree
YM(1, ρ(2, 3), 4, 5) =

∫

12345

5∏

k<l

exp
[
sklPkl

]
(5.2)

× [s23f
(1)
23 〈C1|23,4,5〉+ (23↔ 24, 25, 34, 35, 45)

]

〈C1|23,4,5〉 = s45
(
s24A

tree
YM(1, 3, 2, 4, 5)− s34A

tree
YM(1, 2, 3, 4, 5)

)
. (5.3)

The integration measure
∫

12345 is defined in eq. (4.7), the functions f (1)
ij = f (1)(zi−zj) stem from

OPE contractions among the worldsheet fields and the five-point Mandelstam invariants eq. (4.3)
can be cast into a five-dimensional basis via momentum conservation, e.g. s13 = s45− s12− s23.

From the mathematical point of view, the only novel five-point ingredient as compared to
the four-point amplitude is the extra factor of f (1)

ij = ∂Pij in the integrand of eq. (5.2). Thanks
to the embedding of f (1) into the framework of eIIs eq. (2.18), the α′-expansion of the integrals∫

12345 f
(1)
ij

∏5
k<l exp

[
sklPkl

]
in eq. (5.3) is again captured by eMZVs. The detailed discussion

of kinematic poles as well as the order-by-order treatment of the exponential will be discussed
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elsewhere; here we simply quote the final result:

I5pt(σ|ρ) =
[− ω(0, 0, 0)P2 − 2ω(0, 1, 0, 0)M3 − 5ω(0, 1, 1, 0, 0)P4

− (2ω(0, 1, 0, 1, 0) + 1
2ω(0, 1, 1, 0, 0)

)
L4 +O(α′5)

]
σ,ρ

. (5.4)

Up to weight two at order O(α4), the eMZV content is the same as in the four-point expansion
eq. (4.27). The accompanying 2 × 2 matrices Pi,Mi, Li are indexed by permutations ρ, σ, and
their entries are polynomials of degree i in Mandelstam variables. The representatives Pi and
Mi already appear in the α′-expansion of open-string tree amplitudes, along with even and odd
Riemann zeta values ζi, respectively [29]. Given that the low-energy limit of one-loop amplitudes
at any multiplicity has the mass dimension of s2

ijA
tree
YM(. . .), the eMZV coefficients of Pi,Mi, Li

have weight i−2. This amounts to a shift of −2 in weight in comparison to the MZV coefficients
of Pi,Mi at tree-level.

They are available at the website [39] whereas L4 reads

(L4)11 = s2
12s

2
23 + 2s2

12s23s24 + s2
12s

2
24 + 2s2

12s23s34 + 2s12s13s23s34 + 2s12s
2
23s34

+ 2s2
12s24s34 + s12s13s24s34 + 2s12s23s24s34 + s2

12s
2
34 + 2s12s13s

2
34

+ s2
13s

2
34 + 2s12s23s

2
34 + 2s13s23s

2
34 + s2

23s
2
34 (5.5)

(L4)12 = −s13s24(3s12s23 + s13s23 + s2
23 + 2s12s24 + s13s24 + s23s24

+ 3s12s34 + 2s13s34 + 3s23s34) (5.6)

and (L4)22 = (L4)11
∣∣
2↔3 and (L4)21 = (L4)12

∣∣
2↔3. The relabelling 2↔ 3 refers to the i, j along

with the Mandelstam invariants sij .
The four-point one-loop amplitude eq. (4.27) can be cast into the same form as eq. (5.4)

upon setting L4 → 0 and

P2 → −s12s23 , M3 → s12s23 (s12 + s23) , P4 → −
2
5 s12s23

(
s2

12 + 1
4s12s23 + s2

23
)
, (5.7)

in agreement with the four-point open string tree eq. (4.33). The pattern of eMZVs at higher
orders in α′ as well as the properties of the novel matrices Li are left for further projects.

5.2 Functions f (n) from the RNS formalism

In this subsection we will show that the doubly-periodic functions f (n) for any n are naturally
generated in the one-loop amplitude computation using the RNS formalism [71–73]. Their
emergence in the parity-even and parity-odd sectors turns out to follow two separate mechanisms.

5.2.1 Parity-even RNS amplitudes

In the parity-even sector of the RNS computation, the functions f (n) arise from the summation
over the even spin structures of the fermions on a genus-one worldsheet. We also take this
opportunity to use the method of refs. [74,75] to write down explicit results for the N -point spin
sum for N > 7.

Definition of Vp(x1, . . . , xN). In the subsequent we use the variables xi ≡ zi − zi+1 for
i = 1, . . . , N with the condition zN+1 = z1 such that ∑N

i=1 xi = 0. Using the shorthand
Ωi ≡ αΩ(xi, α) it follows from eq. (3.30) that the αp-component of Ω1 · · ·ΩN has at most p
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simultaneous single poles in the variables xi. This suggests the following definition

Vp(x1, x2, . . . , xN ) ≡ (Ω1Ω2 . . .ΩN )
∣∣∣
αp
. (5.8)

For example, with f
(n)
i ≡ f (n)(xi),

V1(x1, . . . , x5) =
5∑

i=1
f

(1)
i

V2(x1, . . . , x6) =
6∑

i=1
f

(2)
i +

6∑

1≤i<j
f

(1)
i f

(1)
j

V3(x1, . . . , x7) =
7∑

i=1
f

(3)
i +

7∑

1≤i<j
(f (1)
i f

(2)
j + f

(2)
i f

(1)
j ) +

7∑

1≤i<j<k
f

(1)
i f

(1)
j f

(1)
k

V4(x1, . . . , x8) =
8∑

i=1
f

(4)
i +

8∑

1≤i<j
(f (1)
i f

(3)
j + f

(2)
i f

(2)
j + f

(3)
i f

(1)
j ) +

8∑

1≤i<j<k<l
f

(1)
i f

(1)
j f

(1)
k f

(1)
l

+
8∑

1≤i<j<k
(f (1)
i f

(1)
j f

(2)
k + f

(1)
i f

(2)
j f

(1)
k + f

(2)
i f

(1)
j f

(1)
k ) . (5.9)

Interestingly, the anti-holomorphic recursion eq. (3.27) implies that Vp(x1, . . . , xN ) is holomor-
phic; ∂

∂z̄i
Vp(x1, . . . , xN ) = 0. Equivalently, the non-holomorphic factors Im (xi) in Vp(x1, . . . , xN )

trivially vanish because of the condition ∑N
i=1 xi = 0. One can therefore replace E1(x, τ) by

E1(x, τ) and f
(n)
i → g

(n)
i in the notation of subsection 3.3.3 to establish manifest holomorphic-

ity.
Note that the functions in eq. (5.8) were also used in [76] to cast one-loop correlation functions

among arbitrary numbers of Kac-Moody currents into a closed form.

Spin sums in one-loop amplitudes. In the computation of parity-even one-loop amplitudes
in the RNS formalism the bosonic worldsheet fields can be straightforwardly integrated out to
yield products of f (1), possibly after integration by parts. Worldsheet fermions, on the other
hand, give rise to the following spin sums,

GN (x1, . . . , xN ) ≡
∑

ν=1,2,3
(−1)ν

(
θν+1(0, τ)
θ′1(0, τ)

)4
Sν(x1)Sν(x2) . . . Sν(xN ) , (5.10)

where ∑N
i=1 xi = 0, Sν is the Szegö kernel and ν denotes the even spin structure with associated

Jacobi theta functions θ2, θ3, θ4 [77–79,53],

Sν(z) ≡ θ′1(0, τ)θν+1(z, τ)
θν+1(0, τ)θ1(z, τ) . (5.11)

A method to evaluate such sums was presented in ref. [74] and its explicit results at N ≤ 7 can
be written in terms of f (1)(z), the Weierstrass function ℘(z) and its derivatives ∂k℘(z),

G4(x1, . . . , x4) = 1

G5(x1, . . . , x5) =
5∑

j=1
f (1)(xj)
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G6(x1, . . . , x6) = 1
2

{( 6∑

j=1
f (1)(xj)

)2
−

6∑

j=1
℘(xj)

}

G7(x1, . . . , x7) = 1
6

{( 7∑

j=1
f (1)(xj)

)3
−

7∑

j=1
∂℘(xj)− 3

( 7∑

j=1
f (1)(xj)

)( 7∑

j=1
℘(xj)

)}
. (5.12)

One can show that the above results are naturally described by the elliptic functions Vp(x1, . . . , xN ),

GN (x1, . . . , xN ) = VN−4(x1, . . . , xN ), 4 ≤ N ≤ 7 . (5.13)

An alternative method was used in [80, 81] to express GN in terms of single derivatives of the
bosonic Green function. The equivalence of the expression for G6 given in these references with
eq. (5.12) can be verified through the Fay identity eq. (2.39).

Although the results for N ≥ 8 were not written down explicitly in ref. [74], they also take
a natural form when expressed in terms of elliptic functions Vp(x1, . . . , xN ),

G8(x1, . . . , x8) = V4(x1, . . . , x8) + 3e4

G9(x1, . . . , x9) = V5(x1, . . . , x9) + 3e4V1(x1, . . . , x9)
G10(x1, . . . , x10) = V6(x1, . . . , x10) + 3e4V2(x1, . . . , x10) + 10e6

G11(x1, . . . , x11) = V7(x1, . . . , x11) + 3e4V3(x1, . . . , x11) + 10e6V1(x1, . . . , x11)
G12(x1, . . . , x12) = V8(x1, . . . , x12) + 3e4V4(x1, . . . , x12) + 10e6V2(x1, . . . , x12) + 42e8 . (5.14)

The factors of the Eisenstein series ej eq. (3.9) can be systematically computed as well. Following
ref. [75], we define Q0(℘) = 1, Q1(℘) = ℘ and Qk+1(℘) = ℘(2k). For example,

Q2(℘) = 3!℘2 − 1
2g2

Q3(℘) = 5!℘3 − 18g2℘− 12g3

Q4(℘) = 7!℘4 − 1008g2℘
2 − 720g3℘+ 9g2

2

Q5(℘) = 9!℘5 − 90720g2℘
3 − 64800g3℘

2 + 3024g2
2℘+ 2376g2g3 , (5.15)

where the Weierstrass equation (℘′)2 = 4℘3 − g2℘ − g3 has been used to rewrite the 2kth

derivative of ℘ as a polynomial in ℘. In the above equation, g2 = −4(s1s2 + s2s3 + s3s1) = 60e4,
g3 = 4s1s2s3 = 140e6 are the elliptic invariants and si are the branch points of the genus-one
elliptic curve y2 = 4(z − s1)(z − s2)(z − s3) satisfying s1 + s2 + s3 = 0. Defining

F2k−4 ≡ −
1

(2k − 1)!

[
(s1 − s3)Qk(s2) + (s3 − s2)Qk(s1) + (s2 − s1)Qk(s3)

]

(s1 − s3)(s3 − s2)(s2 − s1) , k ≥ 4 (5.16)
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straightforward calculation leads to11

F4 = 3e4, F6 = 10e6, F8 = 42e8, F10 = 168e10, F12 = 627e12 + 9e3
4 ,

which precisely captures the factors of ej in eq. (5.14). We have explicitly checked up to N = 12
that the spin sums can be uniformly written as,

GN (x1, . . . , xN ) = VN−4(x1, . . . , xN ) +
bN−8

2 c+1∑

k=1
F2k+2VN−2k−6(x1, . . . , xN ) . (5.17)

5.2.2 Parity-odd RNS amplitudes

The parity-odd sector of the RNS computation entirely stems from the unique odd spin structure
at genus one where the worldsheet spinors obey anti-periodic boundary conditions along both
torus cycles and acquire a zero mode. The worldsheet integrand is governed by zero-mode
saturation and, probably as a common feature with the Green-Schwarz or pure spinor formalism,
OPE contractions of the worldsheet fields which generate N − 4 factors of f (1)

ij where f (n)
ij ≡

f (n)(zi − zj).
For six points, the direct evaluation of the OPEs gives rise to a quadratic factor f (1)

ij f
(1)
kl

for various combinations of labels capturing the behavior of the singularities as the vertices
collide. However, we know from the Fay identity eq. (2.39) that these quadratic combinations
are not linearly independent and therefore one is naturally led to higher-weight f (n)’s when
considering a minimal basis of integrals to evaluate. The simplest example where a higher-
weight f (n) is generated this way is f (1)

12 f
(1)
13 + f

(1)
23 f

(1)
21 + f

(1)
31 f

(1)
32 = f

(2)
12 + f

(2)
23 + f

(2)
31 which can

be viewed as generalizing the genus-zero partial fraction identity eq. (2.38). The non-vanishing
of the right-hand side provides an important distinction between one-loop and tree-level string
amplitudes and it is ultimately related to the gauge anomaly cancellation mechanism in the
superstring [56, 57]. It can be shown that the parity-odd part of the six-point amplitude as
firstly computed in ref. [82] can be entirely written in terms of f (2), i.e. that any appearance of
f (1) can be removed via eq. (2.39).

More generally, the N−4 powers of f (1) in the N -point amplitude allow, via the Fay identity,
the generation of f (p) with up to p = N − 4. In this way the need for a general integration
method for the type of iterated integrals on an elliptic curve considered in this paper is justified.

6 Discussion and further directions

In this article, we have proposed an organization scheme for elliptic iterated integrals and elliptic
multiple zeta values (eMZVs), where the key definitions are provided in eqs. (2.18) and (2.22).
The infinite family of doubly-periodic functions f (n) appearing in the integrands of section 2 are
put into a mathematical context and are related to multiple elliptic polylogarithms in section 3.

11The Eisenstein series e8, e10 and e12 can be written in terms of e4 and e6 as follows

e8 = 3
7e

2
4, e10 = 5

11e4e6, e12 = 18
143e

3
4 + 25

143e
2
6.

The general formula is written in terms of dk ≡ (2k + 3)k!e2k+4

dn+2 = 3n+ 6
2n+ 9

n∑

k=0

(
n

k

)
dkdn−k .
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As a first natural and simple application of this framework, we have identified eMZVs in the
α′-expansion of one-loop scattering amplitudes in open string theory. The leading orders in the
low-energy behavior of the four- and five-point amplitudes in terms of eMZVs are presented in
eqs. (4.27) and (5.4). Divergent eMZVs turn out to cancel from our results.

Having demonstrated the potential of the formalism for an initial example, there are nu-
merous open questions to be pursued in the near future. Most obviously, the eMZV content of
the low energy expansion of cylinder amplitudes needs to be understood for higher orders in
α′, which can be done conveniently using the new techniques. Furthermore, the contributions
from the cylinder configuration with open string insertions on both boundaries as well as from
the Möbius-strip topology shall be determined in terms of the iterated integrals introduced in
subsection 2.2. The q-expansion of eMZVs exemplified in section 4.4.1 offers a promising ap-
proach to systematically perform the t-integration in eq. (4.1) after summing all topologies for
the gauge group SO(32) [55].

On the mathematical side, the network of relations between eMZVs explored in subsec-
tion 2.2.3 will be further investigated in refs. [49, 66, 67]. A suitable coaction along the lines of
refs. [5–8,16] might lead to a natural basis choice for eMZVs and might allow to further identify
patterns in the one-loop string amplitudes. In the same way as the Drinfeld associator was
instrumental in understanding the pattern of MZVs [29] in open string tree-level amplitudes [37]
and finally allowed to completely determine their α′-expansion in ref. [38], the elliptic associators
discussed in ref. [24] might encode the structure of the α′-expansion at one-loop. Furthermore,
in refs. [83, 84] so-called multiple modular values are discussed whose possible relation to the
eMZVs studied here needs to be explored.

In multi-particle one-loop open string amplitudes, the pure spinor formalism, in particular
the ingredients of ref. [85] are expected to yield a compact description of the kinematic factors
associated to the functions f (n). While the precise superspace kinematic factors along with
various powers of f (1) have been derived in ref. [68], the kinematic companions of f (n≥2) in the
higher-point amplitudes are currently under investigation.

Finally, it would be desirable to find a similar scheme for organizing the α′-expansion of closed
string one-loop amplitudes. In particular, the worldsheet integrals investigated in refs. [63–65]
might allow for a description in terms of eMZVs and their counterpart defined with respect to
the other cycle of the torus. The peculiar linear combinations of torus integrals appearing in
the α′-expansion of closed-string amplitudes call for an explanation along the lines of the above
finding that divergent eMZVs drop out from the open-string expansions.
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in September 2014, in particular to José Burgos for encouraging discussions. We would like
to thank Francis Brown, Claude Duhr and Michael Green for comments and suggestions on
the draft of this article as well as an unknown referee for his elaborate feedback on the first
submitted version. JB wants to thank the Stanford Institute for Theoretical Physics, where
part of this work was completed, for hospitality. Furthermore we are grateful to Francis Brown
and Michael Green for helpful discussions and Ulf Kühn for valuable advice. JB, NM and CRM
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Appendix

A Derivatives of multiple polylogarithms w.r.t. the labels

The proof of the recursion in eq. (2.11) relies on the derivatives of multiple polylogarithms
eq. (2.1) with respect to their labels a1, a2, . . . , an [5]:

∂

∂z
G(~a; z) = 1

z − a1
G(a2, . . . , an; z). (A.1)

∂

∂ai
G(~a; z) = 1

ai−1 − ai
G(. . . , âi−1, . . . ; z) + 1

ai − ai+1
G(. . . , âi+1, . . . ; z)

− ai−1 − ai+1
(ai−1 − ai)(ai − ai+1)G(. . . , âi, . . . ; z) , i 6= 1, n (A.2)

∂

∂an
G(~a; z) = 1

an−1 − an
G(. . . , ân−1, an; z)− an−1

(an−1 − an)an
G(. . . , an−1; z) . (A.3)

B Identities for iterated integrals

This appendix provides further relations to integrate eIIs whose argument occurs in the labels.

B.1 Total derivatives

The following identities generalize eqns. (2.34) to (2.36) for multiple successive occurrences of
the argument t0 in the label. If the first k labels match the argument, one can show that

d
dt0

Γ
(
n1 n2 ... nk nk+1 ... nr
t0 t0 ... t0 ak+1 ... ar ; t0

)
(B.1)

=
(
k−1∏

j=1

tj−1∫

0

dtj f (nj)(tj − t0)
)∫ tk−1

0
dt f (nk)(t− t0)f (nk+1)(t− ak+1) Γ

( nk+2 ... nr
ak+2 ... ar ; t

)
.

For a terminal sequence of aj = t0, we find

d
dt0

Γ
(
n1 ... n`−1 n` ... nr
a1 ... a`−1 t0 ... t0 ; t0

)
= f (n1)(t0 − a1) Γ

(
n2 ... n`−1 n` ... nr
a2 ... a`−1 t0 ... t0 ; t0

)

−
(
`−2∏

j=1

tj−1∫

0

dtj f (nj)(tj − aj)
)∫ t`−2

0
dt f (n`−1)(t− a`−1)f (n`)(t− t0) Γ

( n`+1 ... nr
t0 ... t0 ; t

)

+ f (nr)(−t0) Γ
(
n1 ... n`−1 n` ... nr−1
a1 ... a`−1 t0 ... t0 ; t0

)
. (B.2)

Finally, an intermediate sequence of aj = t0 ranging from j = p to j = q with p 6= 1 and q 6= r

can be addressed via

d
dt0

Γ
(
n1 ... np−1 np ... nq nq+1 ... nr
a1 ... ap−1 t0 ... t0 aq+1 ... ar ; t0

)
= f (n1)(t0 − a1) Γ

(
n2 ... np−1 np ... nq nq+1 ... nr
a2 ... ap−1 t0 ... t0 aq+1 ... ar ; t0

)

−
( p−2∏

j=1

tj−1∫

0

dtj f (nj)(tj − aj)
)

×
∫ tp−2

0
dt f (np−1)(t− ap−1)f (np)(t− t0) Γ

(
np+1 ... nq nq+1 ... nr
t0 ... t0 aq+1 ... ar ; t

)
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+
( p−1∏

j=1

tj−1∫

0

dtj f (nj)(tj − aj)
)( q−1∏

j=p

tj−1∫

0

dtj f (nj)(tj − t0)
)

(B.3)

×
∫ tq−1

0
dt f (nq)(t− t0)f (nq+1)(t− aq+1) Γ

( nq+2 ... nr
aq+2 ... ar ; t

)
.

Cases with multiple disconnected sequences of aj = t0 can be treated along similar lines.

B.2 Recursive removal of the argument from the labels

On the basis of eqns. (B.1) to (B.3), we can generalize the recursions eqns. (2.41) to (2.43) to
situations where several successive instances of the argument occur among the labels. If the first
k labels match the argument, one can show that

Γ
( n1 n2 ... nk nk+1 ... nr
z z ... z ak+1 ... ar ; z

)
= lim

z→0
G(z, . . . , z, ak+1, . . . , ar; z)

r∏

j=1
δnj ,1

− (−1)nk
∫ z

0
dt f (nk+nk+1)(t− ak+1) Γ

(
n1 ... nk−1 0 nk+2 ... nr
t ... t 0 ak+2 ... ar

; t
)

(B.4)

+
nk+1∑

j=0

(
nk − 1 + j

j

)∫ z

0
dt f (nk+1−j)(t− ak+1) Γ

(
n1 ... nk−1 nk+j nk+2 ... nr
t ... t t ak+2 ... ar

; t
)

+
nk∑

j=0

(
nk+1 − 1 + j

j

)
(−1)nk+j

∫ z

0
dt f (nk−j)(t− ak+1) Γ

(
n1 ... nk−1 nk+1+j nk+2 ... nr
t ... t ak+1 ak+2 ... ar

; t
)
.

For a terminal sequence of aj = z, we find

Γ
( n1 ... n`−1 n` ... nr
a1 ... a`−1 z ... z ; z

)
= lim

z→0
G(a1, . . . , a`−1, z, . . . , z; z)

r∏

j=1
δnj ,1

+
∫ z

0
dt f (n1)(t− a1) Γ

(
n2 ... n`−1 n` ... nr
a2 ... a`−1 t ... t ; t

)

+ (−1)n`
∫ z

0
dt f (n`+n`−1)(t− a`−1) Γ

(
n1 ... n`−2 0 n`+1 ... nr
a1 ... a`−2 0 t ... t ; t

)
(B.5)

−
n`−1∑

j=0

(
n` − 1 + j

j

)∫ z

0
dt f (n`−1−j)(t− a`−1) Γ

(
n1 ... n`−2 n`+j n`+1 ... nr
a1 ... a`−2 t t ... t ; t

)

−
n∑̀

j=0

(
n`−1 − 1 + j

j

)
(−1)n`+j

∫ z

0
dt f (n`−j)(t− a`−1) Γ

(
n1 ... n`−2 n`−1+j n`+1 ... nr
a1 ... a`−2 a`−1 t ... t ; t

)

+ (−1)nr
∫ z

0
dt f (nr)(t) Γ

(
n1 ... n`−1 n` ... nr−1
a1 ... a`−1 t ... t ; t

)
.

Finally, an intermediate sequence of aj = z ranging from j = p to j = q with p 6= 1 and q 6= r

can be addressed via

Γ
( n1 ... np−1 np ... nq nq+1 ... nr
a1 ... ap−1 z ... z aq+1 ... ar ; z

)
= lim

z→0
G(a1, . . . , ap−1, z, . . . , z, aq+1, . . . , ar; z)

r∏

j=1
δnj ,1

+
∫ z

0
dt f (n1)(t− a1) Γ

(
n2 ... np−1 np ... nq nq+1 ... nr
a2 ... ap−1 t ... t aq+1 ... ar ; t

)

+ (−1)np
∫ z

0
dt f (np+np−1)(t− ap−1) Γ

(
n1 ... np−2 0 np+1 ... nq nq+1 ... nr
a1 ... ap−2 0 t ... t aq+1 ... ar

; t
)

(B.6)
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−
np−1∑

j=0

(
np − 1 + j

j

)∫ z

0
dt f (np−1−j)(t− ap−1) Γ

(
n1 ... np−2 np+j np+1 ... nq nq+1 ... nr
a1 ... ap−2 t t ... t aq+1 ... ar

; t
)

−
np∑

j=0

(
np−1−1+j

j

)
(−1)np+j

∫ z

0
dt f (np−j)(t− ap−1) Γ

(
n1 ... np−2 np−1+j np+1 ... nq nq+1 ... nr
a1 ... ap−2 ap−1 t ... t aq+1 ... ar

; t
)

− (−1)nq
∫ z

0
dt f (nq+nq+1)(t− aq+1) Γ

(
n1 ... np−1 np ... nq−1 0 nq+2 ... nr
a1 ... ap−1 t ... t 0 aq+2 ... ar

; t
)

+
nq+1∑

j=0

(
nq − 1 + j

j

)∫ z

0
dt f (nq+1−j)(t− aq+1) Γ

(
n1 ... np−1 np ... nq−1 nq+j nq+2 ... nr
a1 ... ap−1 t ... t t aq+2 ... ar

; t
)

+
nq∑

j=0

(
nq+1−1+j

j

)
(−1)nq+j

∫ z

0
dt f (nq−j)(t− aq+1) Γ

(
n1 ... np−1 np ... nq−1 nq+1+j nq+2 ... nr
a1 ... ap−1 t ... t aq+1 aq+2 ... ar

; t
)
.

These relations reproduce eqns. (2.41) to (2.43) for k = 1, p = q and ` = r, respectively.

B.3 Eliminating labels aj = z at length three

The generalization of eq. (2.52) to length three is governed by

Γ ( n1 n2 n3
z 0 0 ; z) = −ζ3δ

1
n1δ

1
n2δ

1
n3 + ζ2

n2∑

j=0
δ1
n3δ

1
n1+j

(
n1 − 1 + j

j

)
Γ(n2 − j; z)

− (−1)n1 Γ(n1 + n2, 0, n3; z) +
n1∑

j=0
(−1)n1+j

(
n2 − 1 + j

j

)
Γ(n1 − j, n2 + j, n3; z)

−
n2∑

j=0
(−1)n1+j

(
n1 − 1 + j

j

)
Γ(n2 − j, n1 + n3 + j, 0; z) (B.7)

+
n2∑

j=0

(
n1 − 1 + j

j

)
n3∑

k=0
(−1)n1+j+k

(
n1 + j − 1 + k

k

)
Γ(n2 − j, n3 − k, n1 + j + k; z)

+
n2∑

j=0

(
n1 − 1 + j

j

) n1+j∑

k=0
(−1)n1+j+k

(
n3 − 1 + k

k

)
Γ(n2 − j, n1 + j − k, n3 + k; z) .

The reflection identity (2.20) allows to infer Γ ( n1 n2 n3
z z 0 ; z) = (−1)n1+n2+n3 Γ ( n3 n2 n1

z 0 0 ; z), and
permutations in the labels are covered by shuffle relations.

C Trigonometric integrals

This appendix gathers trigonometric integrals relevant for the evaluation of eMZVs. The result
in eq. (4.30) for ω(0, 1, 0, 0) relies on

∫ 1

0
dz4

∫ z4

0
dz3

∫ z3

0
dz2 sin(2πnz2) z2 = 3

8π3n3 (C.1)
∫ 1

0
dz4

∫ z4

0
dz3

∫ z3

0
dz2 cot(πz2) z2 = 3ζ3

4π3 , (C.2)

and the eMZVs relevant at order s2
ij as given by eq. (4.31) and eq. (4.32) are based on

∫ 1

0
dz5

∫ z5

0
dz4

∫ z4

0
dz3

∫ z3

0
dz2

∫ z2

0
dz1 cos(2πnz1) = 1

24π2n2 −
1

16π4n4 (C.3)
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∫ 1

0
dz5

∫ z5

0
dz4

∫ z4

0
dz3

∫ z3

0
dz2 cos(2πnz2) z2 = − 1

24π2n2 + 1
4π4n4 . (C.4)

D Cycle index of the symmetric group and the f (n) functions

This appendix highlights the connection between the explicit expansion of the doubly-periodic
functions f (n) in (3.23) with the cycle index of the symmetric group Sn. For general references,
see [86,87].

Cycle structures. Every permutation g ∈ Sn of X = {1, . . . , n} can be written as the product
of disjoint cycles with lengths a1, . . . , an such that n = ∑n

i=1 ai. This integer partition of n is
represented by λ = 1a12a2 . . . nan and is called the cycle structure of the permutation. Therefore
the total number of cycle structures for the permutations in Sn is given by the integer partition
P (n) = 1, 2, 3, 5, 7, . . .. Note that the number of terms in each f (n) is also P (n). Furthermore,
if λ = 1a12a2 . . . nan is a partition of n (denoted by λ ` n), the number of permutations with
cycle structure λ is [86]

n!∏n
i=1 i

aiai!
. (D.1)

Note that the coefficients of the monomials Ea1
1 . . . Eann in f (n) given by eq. (3.24) are reproduced

by the formula (D.1) with the corresponding cycle structure. This observation can be made
more precise with the definition of the cycle index of the symmetric group Sn [86],

Z(Sn; s1, . . . , sn) = 1
n!
∑

g∈Sn
z(g; s1, . . . , sn) , (D.2)

where z(g; s1, . . . , sn) = sa1
1 s

a2
2 . . . sann and ai counts the number of cycles of length i in the

permutation g. One can see from the first few examples12,

Z(S1, s1) = s1

Z(S2, s1, . . . , s2) = 1
2!
(
s2

1 + s2
)

Z(S3, s1, . . . , s3) = 1
3!
(
s3

1 + 3s1s2 + 2s3
)

Z(S4, s1, . . . , s4) = 1
4!
(
s4

1 + 6s2
1s2 + 8s1s3 + 3s2

2 + 6s4
)

that the cycle index of Sn captures the expansions in (3.23). More precisely, theorem 1.3.3 of [88]
can be written as ∞∑

n=0
αnZ(Sn; E1, . . . , En) = exp

( ∞∑

j=1

Ej
j
αj
)
, (D.3)

and comparing (3.22) with (D.3) leads to,

f (n) = Z(Sn; E1, . . . , En)

=
∑

λ`n

n∏

i=1

Eaii
iaiai!

, λ = 1a12a2 . . . nan . (D.4)

12In addition, it is convenient to define Z(S0) = 1.
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Furthermore, one can also show that [87],

∂f (n)(z, τ)
∂Ep

= 1
p
f (n−p)(z, τ). (D.5)

Note, in particular, that (D.5) yields an alternative proof of (3.27),

∂f (n)(z, τ)
∂z̄

= ∂f (n)(z, τ)
∂E1

∂E1
∂z̄

= − π

Im(τ)f
(n−1)(z, τ). (D.6)

Symmetric polynomials. The cycle index of the symmetric group Sn also provides a recipe
for expressing the complete symmetric function hj in terms of the power sum function pj , i.e.,
hn = Z(Sn; p1, p2, . . . , pn) [86]. Therefore the functional form of hn matches that of f (n) and one
can exploit the well-known relation nhn = ∑n

i=1 pihn−i from the theory of symmetric functions
to obtain the corresponding recursion formula eq. (3.25) for f (n).

References
[1] A. B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, “Classical Polylogarithms for Amplitudes

and Wilson Loops”, Phys.Rev.Lett. 105, 151605 (2010), arxiv:1006.5703.
[2] L. J. Dixon, C. Duhr and J. Pennington, “Single-valued harmonic polylogarithms and the

multi-Regge limit”, JHEP 1210, 074 (2012), arxiv:1207.0186.
[3] J. Broedel, O. Schlotterer and S. Stieberger, “Polylogarithms, Multiple Zeta Values and

Superstring Amplitudes”, Fortsch.Phys. 61, 812 (2013), arxiv:1304.7267.
[4] V. Del Duca, L. J. Dixon, C. Duhr and J. Pennington, “The BFKL equation, Mueller-Navelet jets

and single-valued harmonic polylogarithms”, JHEP 1402, 086 (2014), arxiv:1309.6647.
[5] A. Goncharov, “Multiple polylogarithms and mixed Tate motives”, math/0103059.
[6] A. Goncharov, “Galois symmetries of fundamental groupoids and noncommutative geometry”,

Duke Math.J. 128, 209 (2005), math/0208144.
[7] F. C. S. Brown, “On the decomposition of motivic multiple zeta values”, arxiv:1102.1310, in:

“Galois-Teichmüller theory and arithmetic geometry”, Math. Soc. Japan, Tokyo (2012), 31–58p.
[8] C. Duhr, “Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes”,

JHEP 1208, 043 (2012), arxiv:1203.0454.
[9] L. Adams, C. Bogner and S. Weinzierl, “The two-loop sunrise graph with arbitrary masses”,

J.Math.Phys. 54, 052303 (2013), arxiv:1302.7004.
[10] S. Bloch and P. Vanhove, “The elliptic dilogarithm for the sunset graph”,

J. Number Theory 148, 328 (2015), arxiv:1309.5865.
[11] L. Adams, C. Bogner and S. Weinzierl, “The two-loop sunrise graph in two space-time dimensions

with arbitrary masses in terms of elliptic dilogarithms”, J.Math.Phys. 55, 102301 (2014),
arxiv:1405.5640.

[12] F. Brown and O. Schnetz, “A K3 in φ4”, Duke Math.J. 161, 1817 (2012).
[13] F. Brown and D. Doryn, “Framings for graph hypersurfaces”, arxiv:1301.3056.
[14] S. Caron-Huot and K. J. Larsen, “Uniqueness of two-loop master contours”,

JHEP 1210, 026 (2012), arxiv:1205.0801.
[15] S. Bloch, M. Kerr and P. Vanhove, “A Feynman integral via higher normal functions”,

arxiv:1406.2664.
[16] F. Brown and A. Levin, “Multiple elliptic polylogarithms”.

36
147



[17] B. Enriquez, “Analogues elliptiques des nombres multizétas”, arxiv:1301.3042.
[18] A. Beilinson and A. Levin, “The Elliptic Polylogarithm”, in: “Proc. of Symp. in Pure Math. 55,

Part II”, ed.: J.-P. S. U. Jannsen, S.L. Kleiman, AMS (1994), 123-190p.
[19] S. J. Bloch, “Higher regulators, algebraic K-theory, and zeta functions of elliptic curves”,

American Mathematical Society, Providence, RI (2000), 1-97p.
[20] A. Levin, “Elliptic polylogarithms: An analytic theory”, Compositio Mathematica 106, 267 (1997).
[21] J. Wildeshaus, “Realizations of Polylogarithms”, Springer (1997).
[22] D. Zagier, “The Bloch-Wigner-Ramakrishnan polylogarithm function”, Math. Ann. 286, 613 (1990).
[23] A. Weil, “Elliptic functions according to Eisenstein and Kronecker”, Springer, Heidelberg,

Published in “Ergebnisse der Mathematik und ihrer Grenzgebiete” (1976).
[24] B. Enriquez, “Elliptic associators”, Selecta Math. (N.S.) 20, 491 (2014).
[25] V. Drinfeld, “Quasi Hopf algebras”, Leningrad Math. J. 1, 1419 (1989).
[26] V. Drinfeld, “On quasitriangular quasi-Hopf algebras and on a group that is closely connected with

Gal(Q̄/Q)”, Leningrad Math. J. 2 (4), 829 (1991).
[27] T. Le and J. Murakami, “Kontsevich’s integral for the Kauffman polynomial”,

Nagoya Math J. 142, 93 (1996).
[28] S. Stieberger, “Constraints on Tree-Level Higher Order Gravitational Couplings in Superstring

Theory”, Phys.Rev.Lett. 106, 111601 (2011), arxiv:0910.0180.
[29] O. Schlotterer and S. Stieberger, “Motivic Multiple Zeta Values and Superstring Amplitudes”,

J.Phys. A46, 475401 (2013), arxiv:1205.1516.
[30] O. Schnetz, “Graphical functions and single-valued multiple polylogarithms”,

Commun. Number Theory Phys. 8, 589 (2014), arxiv:1302.6445.
[31] F. Brown, “Single-valued motivic periods and multiple zeta values”,

Forum Math. Sigma 2, e25 (2014), arxiv:1309.5309.
[32] S. Stieberger, “Closed superstring amplitudes, single-valued multiple zeta values and the Deligne

associator”, J.Phys. A47, 155401 (2014), arxiv:1310.3259.
[33] S. Stieberger and T. R. Taylor, “Closed String Amplitudes as Single-Valued Open String

Amplitudes”, Nucl.Phys. B881, 269 (2014), arxiv:1401.1218.
[34] D. Oprisa and S. Stieberger, “Six gluon open superstring disk amplitude, multiple hypergeometric

series and Euler-Zagier sums”, hep-th/0509042.
[35] S. Stieberger and T. R. Taylor, “Multi-Gluon Scattering in Open Superstring Theory”,

Phys.Rev. D74, 126007 (2006), hep-th/0609175.
[36] T. Terasoma, “Selberg Integrals and Multiple Zeta Values”, Compositio Mathematica 133, 1 (2002).
[37] J. Drummond and E. Ragoucy, “Superstring amplitudes and the associator”,

JHEP 1308, 135 (2013), arxiv:1301.0794.
[38] J. Broedel, O. Schlotterer, S. Stieberger and T. Terasoma, “All order α′-expansion of superstring

trees from the Drinfeld associator”, Phys.Rev. D89, 066014 (2014), arxiv:1304.7304.
[39] http://mzv.mpp.mpg.de.
[40] M. B. Green, J. Schwarz and E. Witten, “Superstring Theory. Vol. 2: Loop amplitudes, anomalies

and phenomenology”, Cambridge, UK: Univ. Pr. (1987) (Cambridge Monographs on Mathematical
Physics) (1987).

[41] C. Duhr, H. Gangl and J. R. Rhodes, “From polygons and symbols to polylogarithmic functions”,
JHEP 1210, 075 (2012), arxiv:1110.0458.

[42] J. Ablinger, J. Bluemlein and C. Schneider, “Analytic and Algorithmic Aspects of Generalized
Harmonic Sums and Polylogarithms”, J.Math.Phys. 54, 082301 (2013), arxiv:1302.0378.

37

Appendix C. Elliptic multiple zeta values and one-loop superstring amplitudes

148



[43] J. Ablinger and J. Bluemlein, “Harmonic Sums, Polylogarithms, Special Numbers, and their
Generalizations”, arxiv:1304.7071.

[44] J. M. Borwein, D. M. Bradley, D. J. Broadhurst and P. Lisonek, “Special values of multiple
polylogarithms”, Trans.Am.Math.Soc. 353, 907 (2001), math/9910045.

[45] F. Brown, “Mixed Tate motives over Z”, Ann. Math. 175, 949 (2012).
[46] F. Brown, “Multiple zeta values and periods of moduli spaces M0,n”, math/0606419.
[47] C. Bogner and F. Brown, “Feynman integrals and iterated integrals on moduli spaces of curves of

genus zero”, Commun.Num.Theor.Phys. 09, 189 (2015), arxiv:1408.1862.
[48] J. Blumlein, D. Broadhurst and J. Vermaseren, “The Multiple Zeta Value Data Mine”,

Comput.Phys.Commun. 181, 582 (2010), arxiv:0907.2557.
[49] J. Broedel, N. Matthes and O. Schlotterer, “Relations between elliptic multiple zeta values and a

special derivation algebra”.
[50] A. Levin and G. Racinet, “Towards multiple elliptic polylogarithms”, arxiv:0703237.
[51] L. Kronecker, “Zur Theorie der elliptischen Funktionen”, Mathematische Werke IV, 313 (1881).
[52] D. Zagier, “Periods of modular forms and Jacobi theta functions”, Invent. Math. 104, 449 (1991).
[53] D. Mumford, M. Nori and P. Norman, “Tata Lectures on Theta I, II”, Birkhäuser (1983, 1984).
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Abstract

We investigate relations between elliptic multiple zeta values and describe a
method to derive the number of indecomposable elements of given weight and
length. Our method is based on representing elliptic multiple zeta values as
iterated integrals over Eisenstein series and exploiting the connection with a
special derivation algebra. Its commutator relations give rise to constraints on
the iterated integrals over Eisenstein series relevant for elliptic multiple zeta val-
ues and thereby allow to count the indecomposable representatives. Conversely,
the above connection suggests apparently new relations in the derivation alge-
bra. Under https://tools.aei.mpg.de/emzv we provide relations for elliptic
multiple zeta values over a wide range of weights and lengths.
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1 Introduction

While multiple zeta values (MZVs) have been a very active field of research during the last
decades, their elliptic analogues have received more attention only recently. Pioneered by the
work of Enriquez [1], Levin [2], Levin and Racinet [3] as well as Brown and Levin [4], many
properties of elliptic multiple zeta values (eMZVs) have been identified. While mathematically
interesting objects in their own right, eMZVs, the associated elliptic iterated integrals as well as
related objects such as multiple elliptic polylogarithms appear in various contexts in quantum
field theory and string theory. Well-known examples include the one-loop amplitude in open
superstring theory [5] as well as the sunset Feynman integral and its generalizations [6–9]. We
would also like to mention a recent application of elliptic functions to the reduction of Feynman
integrals using maximal unitarity cuts [10].

Algebraic relations between usual MZVs are well understood based on their conjectural
structure as a Hopf algebra comodule [11, 12]. The number of indecomposable MZVs of given
weight and depth is expected to be given by the Broadhurst-Kreimer conjecture [13], which is
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in line with Zagier’s conjecture [14] on the counting of MZVs at fixed weight. A comprehensive
collection of relations among MZVs has been made available in the MZV data mine [15].

In this article, we investigate relations between eMZVs and classify their indecomposable rep-
resentatives. Apart from the shuffle relations which are immediately implied by their definition
as iterated integrals, eMZVs are related by Fay identities. Those identities are the generalization
of partial-fraction identities, which appear in the context of usual MZVs. Both shuffle and Fay
relations preserve the overall modular weight of the integrand which appears to furnish a natural
analogue of the MZVs’ transcendental weight. We will describe a systematic way of exploiting
the combination of the two types of relations. However, the application of this method to higher
weights and lengths suffers from the proliferating combinatorics of the Fay relations.

An alternative and computationally more efficient way of studying relations between eMZVs
consists of employing their Fourier expansion in q = e2πiτ , where τ is the modular parameter
of the elliptic curve. The q-derivative of eMZVs is known from ref. [1] in terms of Eisenstein
series and eMZVs of lower length. Since eMZVs degenerate to MZVs at the cusp q → 0 in a
manner described in refs. [1, 16], the supplementing boundary value is available as well. Hence,
the differential equation can be integrated to yield the q-expansion of eMZVs recursively to – in
principle – arbitrarily high order. Once the q-expansion of an eMZV is available up to a certain
power in q, finding relations between eMZVs valid up to this particular power and identifying
indecomposable representatives amounts to solving a linear system.

Clearly, the agreement of the respective q-expansions up to a certain power in q is necessary
but not sufficient for the validity of eMZV relations. Nevertheless, the method of q-expansions
allows to confirm that indeed, Fay and shuffle identities comprise the entirety of eMZV relations
for a variety of combinations of weights and lengths. Accordingly, this leads us to conjecture that
all available relations between eMZVs are implied by Fay and shuffle identities. At lengths and
weights beyond the reach of our current computer implementation of Fay and shuffle identities,
the comparison of q-expansions gives rise to conjectural relations which nicely tie in with the
algebraic considerations to be described next.

In order to overcome the shortcomings of comparing q-expansions of eMZVs, one uses their
differential equation in τ to write eMZVs as linear combinations of iterated integrals over Eisen-
stein series or iterated Eisenstein integrals for short. Contrary to the definition of eMZVs, where
the iterated integration is performed over coordinates of the elliptic curve, the integration in
their representation via Eisenstein series is performed over the modular parameter of the elliptic
curve. Similar iterated integrals, some of them involving more general modular forms, have been
studied by Manin in ref. [17]. Those integrals have been revisited by Brown [18] recently, who
used them to define multiple modular values. A new feature of Brown’s approach to iterated
integrals of modular forms is that it allows also for an integration along paths which connect
two cusps. Among other things, multiple modular values provide a conceptual explanation of
the relationship between double zeta values and cusp forms [19].

The representation of eMZVs as iterated Eisenstein integrals is particularly convenient be-
cause the latter are believed to be linearly independent over the complex numbers. This has
been tested up to the lengths and weights considered in this paper, but it remains a working
hypothesis for several constructions in this work1. In particular, an analogue of the Fay relations
is not known to hold for iterated Eisenstein integrals. This led to the first expectation that one
can find the number of indecomposable eMZVs by enumerating all shuffle-independent iterated

1It is expected that C-linear independence of iterated Eisenstein integrals holds in full generality, and it can
presumably be shown using the techniques introduced in [20]. We do not attempt a proof in this paper and defer
this problem to future work [21].
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Eisenstein integrals.
While this idea indeed yields the correct number of indecomposable eMZVs of low length

and weight, there is another effect appearing at higher weight: in the rewriting of any eMZV
certain shuffle-independent iterated Eisenstein integrals occur in rigid linear combinations only.
In other words, not all iterated Eisenstein integrals can be expressed in terms of eMZVs. The
above rigid linear combinations in turn are implied by relations well known from a special algebra
of derivations u [22–25]. The patterns we find from investigating various eMZVs exactly match
the available data about the derivation algebra in refs. [24,26]. Consequently, we turn this into
a method to infer the number of indecomposable eMZVs at given weight and length. The results
of this method agree perfectly with the data obtained from either shuffle and Fay relations. In
addition, complete knowledge of relations in the derivation algebra leads to upper bounds on the
number of indecomposable eMZVs. Those upper bounds complement the lower bounds obtained
from comparing q-expansions. The study of q-expansions allows to enumerate indecomposable
eMZVs of given weight and length without assuming linear independence of different iterated
Eisenstein integrals, which will be discussed below.

The algebra of derivations u on one side and eMZVs on the other side are linked by a
differential equation for the elliptic KZB associator [22, 23] derived by Enriquez [16]. This
differential equation implies upper bounds on the number of indecomposable eMZVs. Assuming
these upper bounds to be attained, one can extend the knowledge about the derivation algebra
u substantially: we identify numerous apparently new relations up to and including depth five.
Moreover, there is no conceptual bottleneck in extending the analysis to arbitrary weight and
depth.

The link between eMZVs and the derivation algebra u becomes particularly clear upon map-
ping iterated Eisenstein integrals onto words composed from non-commutative letters g. The
viability of the bookkeeping framework introduced in section 4 relies on the linear independence
of iterated Eisenstein integrals, which is not proved at this point. On the other hand, since one
can always check linear independence for a finite number of iterated Eisenstein integrals directly,
the empirical results made available on our eMZV webpage do not depend on the general linear
independence statement.

Moreover, the rewriting of eMZVs as linear combinations of iterated Eisenstein integrals and
into letters g lateron bears similarities to a process, which appeared already in the context of
usual MZVs. Namely, employing a conjectural isomorphism φ, MZVs can be rewritten in terms
of an alphabet of non-commutative letters f (cf. ref. [11]). However, the construction of the
map φ is highly elaborate, as it requires the motivic coaction and also depends on the choice
of an algebra basis for (motivic) MZVs. On the contrary, the rewriting of eMZVs in terms of
iterated Eisenstein integrals is completely canonical and straightforward from the differential
equation for eMZVs. On the other hand, while the number of indecomposable MZVs at given
weight is determined by counting all shuffle-independent words in f , the corresponding problem
for eMZVs requires the consideration of the non-trivial relations in the derivation algebra u in
addition.

In summary, the results in this work are fourfold:

• an explicit basis of irreducible eMZVs of certain weights and lengths, together with expres-
sions of eMZVs in that basis collected on a web page https://tools.aei.mpg.de/emzv

• the observation that Fay, shuffle and reflection relations generate all identities between
eMZVs up to the weights and lengths considered.
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• a general method for counting irreducible eMZVs based on iterated Eisenstein integrals
and the special derivation algebra, for which we need to assume linear independence of
iterated Eisenstein integrals.

• several explicit new relations in the special derivation algebra u, which are collected also
at https://tools.aei.mpg.de/emzv

The article is organized as follows: section 2 starts with a small review of eMZVs and sets the
stage for combining Fay and shuffle relations with the q-expansion, resulting in an “observa-
tional” set of indecomposable eMZVs. Section 3 is devoted to a brief recapitulation of structures
present for usual MZVs with particular emphasis on their rewriting in terms of non-commutative
words. In section 4 we set up the translation of eMZVs into iterated Eisenstein integrals, inves-
tigate their properties and connect the bookkeeping of indecomposable eMZVs with the algebra
of derivations u. In subsection 4.6 we describe a modified version of iterated Eisenstein integrals
suitable in particular for the description of eMZVs. Several appendices are complementary to
the discussion in the main text. In particular, some relations between elements of the derivation
algebra are collected in appendix C.2.

2 Relations between elliptic multiple zeta values

After recalling the definition of eMZVs, we are going to explore the implications of Fay and
shuffle relations as well as the method of q-expansions. In addition, we will describe how usual
MZVs defined via

ζn1,n2,...,nr ≡
∑

0<k1<k2<...<kr

k−n1
1 k−n2

2 . . . k−nrr , nr ≥ 2 (2.1)

arise as constant terms of eMZVs.

2.1 Prerequisites and definitions

In this subsection we will briefly review elliptic iterated integrals and define eMZVs. An elaborate
introduction from a string theorist’s point of view is available in ref. [5]. To get started, let us
consider iterated integrals on the punctured elliptic curve E×τ , which is Eτ ≡ C/(Z + Zτ) with
the origin removed and Im (τ) > 0. We will frequently refer to the modular parameter τ by its
exponentiated version

q ≡ e2πiτ , such that 2πi d
dτ = −4π2q

d
dq = −4π2 d

dlog q . (2.2)

Functions A of the modular parameter will be denoted by either A(τ) or A(q).

Weighting functions. A natural collection of weighting functions for the iterated integration
to be defined below is provided by the Eisenstein-Kronecker series F (z, α, τ) [27,4],

F (z, α, τ) ≡ θ′1(0, τ)θ1(z + α, τ)
θ1(z, τ)θ1(α, τ) , (2.3)

where θ1 is the odd Jacobi theta function and the tick denotes a derivative with respect to
the first argument. The definition eq. (2.3) immediately yields F (z, α, τ) = F (z + 1, α, τ), and
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supplementing an additional, non-holomorphic factor lifts the quasi-periodicity of the Eisenstein-
Kronecker series with respect to z 7→ z+τ to an honest double-periodicity. The resulting function
Ω(z, α, τ) on an elliptic curve serves as a generating series for the weighting functions f (n)(z, τ)
in eMZVs:

Ω(z, α, τ) ≡ exp
(

2πiα Im (z)
Im (τ)

)
F (z, α, τ) =

∞∑

n=0
f (n)(z, τ)αn−1 . (2.4)

The functions f (n) are doubly periodic and alternate in their parity,

f (n)(z + 1, τ) = f (n)(z + τ, τ) = f (n)(z, τ) , f (n)(−z, τ) = (−1)nf (n)(z, τ) . (2.5)

Their simplest instances read

f (0)(z, τ) = 1 , f (1)(z, τ) = θ′1(z, τ)
θ1(z, τ) + 2πi Im (z)

Im (τ) , (2.6)

and f (1) is in fact the only weighting function with a simple pole on the lattice Z+Zτ including
the origin. The remaining f (n) with n 6= 1 are non-singular on the entire elliptic curve. As
elaborated in [4] and section 3 of [5], the weighting functions f (n) can be expressed in terms of
Eisenstein functions and series the latter of which will play a central rôle in the sections below.

Elliptic iterated integrals and eMZVs. Even though the functions f (n) are defined for
arbitrary complex arguments z and suitable for integrations along both homology cycles of the
elliptic curve, we will restrict our subsequent discussion to real arguments. This is sufficient
for studying eMZVs as iterated integrals over the interval [0, 1] on the real axis and avoids the
necessity for homotopy-invariant completions of the integrands2. Hence, any integration variable
and first argument of f (n)(z, τ) is understood to be real.

Employing the functions f (n), iterated integrals on the elliptic curve E×τ are defined via

Γ ( n1 n2 ... nr
a1 a2 ... ar ; z) ≡

∫ z

0
dt f (n1)(t− a1) Γ ( n2 ... nr

a2 ... ar ; t) , (2.7)

where the recursion starts with Γ(; z) ≡ 1. The elliptic iterated integral in eq. (2.7) is said to
have weight w = ∑r

i=1 ni, and the number r of integrations will be referred to as its length.
Beginning with the above equation, we will usually suppress the second argument τ for the
weighting functions f (n) and the elliptic iterated integrals Γ.

Definition (2.7) implies a shuffle relation with respect to the combined letters Ai ≡ ni
ai

describing the weighting functions f (ni)(z − ai),

Γ(A1, A2, . . . , Ar; z) Γ(B1, B2, . . . , Bq; z) = Γ
(
(A1, A2, . . . , Ar) (B1, B2, . . . , Bq); z

)
. (2.8)

Another obvious property of elliptic iterated integrals is the reflection identity due to eq. (2.5)

Γ ( n1 n2 ... nr
a1 a2 ... ar ; z) = (−1)n1+n2+...+nr Γ ( nr ... n2 n1

z−ar ... z−a2 z−a1 ; z) . (2.9)

Finally, if all the labels ai vanish – which, because of the periodicity of f (n) is equivalent to all
2A generating series for homotopy-invariant iterated integrals is given in ref. [4], in which the differential forms

f (n)(z, τ)dz are accompanied by ν ≡ 2πi dIm (z)
Im (τ) . While any integral based upon a sequence of ν and dz has

a unique homotopy-invariant uplift via admixtures of f (n>0)(z, τ)dz, iterated integrals of f (n)(z, τ)dz allow for
multiple homotopy-invariant completions via ν. A thorough discussion of the issue is provided in ref. [5].
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labels ai being integer – we will often use the notation

Γ(n1, n2, . . . , nr; z) ≡ Γ ( n1 n2 ... nr
0 0 ... 0 ; z) . (2.10)

Evaluating the elliptic iterated integrals in eq. (2.10) at z = 1 gives rise to elliptic multiple
zeta values or eMZV s for short [1]:

ω(n1, n2, . . . , nr) ≡
∫

0≤zi≤zi+1≤1

f (n1)(z1)dz1 f
(n2)(z2)dz2 . . . f

(nr)(zr)dzr (2.11)

= Γ(nr, . . . , n2, n1; 1) ,

where `ω = r is referred to as the length while wω = ∑r
i=1 ni is called the weight of an eMZV. The

subscript ω refers to the current ω-representation of eMZVs in eq. (2.11), which has a different
notion of weight and length compared to the iterated Eisenstein integrals to be defined below
in section 4.

Being defined on an elliptic curve, eMZVs depend on its modular parameter τ and furnish a
natural genus-one generalization of standard MZVs, which are to be reviewed in section 3.

The shuffle relation eq. (2.8) straightforwardly carries over to eMZVs,

ω(n1, n2, . . . , nr)ω(k1, k2, . . . , ks) = ω
(
(n1, n2, . . . , nr) (k1, k2, . . . , ks)

)
, (2.12)

whereas the parity property eq. (2.5) of the weighting functions f (n) implies the reflection identity

ω(n1, n2, . . . , nr−1, nr) = (−1)n1+n2+...+nr ω(nr, nr−1, . . . , n2, n1) . (2.13)

Note that this implies the vanishing of odd-weight eMZVs with reversal-symmetric labels:

ω(n1, n2, . . . , nr) = 0 , if (n1, n2, . . . , nr) = (nr, . . . , n2, n1) and
r∑

i=1
ni odd . (2.14)

Although suppressed in our notation, every eMZV is still a function of the modular parameter
τ and inherits a Fourier expansion in q from the restriction of f (n) to real arguments.

ω(n1, . . . , nr) = ω0(n1, . . . , nr) +
∞∑

k=1
ck(n1, . . . , nr)qk . (2.15)

The τ -independent quantity ω0 in eq. (2.15) is called the constant term of ω and will be shown
to consist of MZVs and integer powers of 2πi in the next subsection. We will refer to eMZVs for
which ck(n1, . . . , nr) = 0 for all k ∈ N+ as constant.

Regularization. While the functions f (n)(z) are smooth for n 6= 1, the function f (1)(z) in
eq. (2.6) diverges as 1

z and 1
z−1 for z → 0 and z → 1, respectively. Hence, eMZVs ω(n1, . . . , nr)

with n1 = 1 or nr = 1 are a priori divergent, and require a regularization process similar to
shuffle regularization for MZVs [1] (cf. also [21]). A natural choice at genus one is to modify the
integration region in eq. (2.7) by a small ε > 0,

∫

ε≤zi≤zi+1≤z−ε
f (n1)(z1 − a1)dz1 f

(n2)(z2 − a2)dz2 . . . f
(nr)(zr − ar)dzr , (2.16)
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and to expand the integral as a polynomial in log(−2πiε). Hereby the branch of the logarithm
is chosen such that log(−i) = −πi

2 . The regularized value of eq. (2.16) is then defined to be
the constant term in the ε-expansion. The factor −2πi in the expansion parameter log(−2πiε)
ensures that the limit τ → i∞ does not introduce any logarithms, and that eMZVs degenerate
to MZVs upon setting z = 1 in eq. (2.16). For later reference, we will call eMZVs of the form
ω(1, n2, . . .) or ω(. . . , nr−1, 1) divergent.

For the enumeration of eMZVs, we have employed an infinite alphabet, consisting of the
non-negative integers 0, 1, 2, . . . eq. (2.11). There is another way of carrying out this enumer-
ation, which uses a two-letter alphabet instead [4]. The two-letter alphabet descends from a
construction of eMZVs via homotopy-invariant iterated integrals. Since every eMZV in the infi-
nite alphabet can be rewritten as an eMZV in the two-letter alphabet and vice-versa, one does
not lose information by choosing to work with one alphabet or the other.

2.2 Fay and shuffle relations

In this subsection, we analyze relations among eMZVs defined in eq. (2.11) and gather examples
of indecomposable eMZVs. A set of indecomposable eMZVs of weight wω and length `ω is a
minimal set of eMZVs such that any other eMZV of the same weight and length can be expressed
as a linear combination of elements from this set and

• products of eMZVs with strictly positive weights,

• eMZVs of lengths smaller than `ω or weight lower than wω,

where the coefficients comprise MZVs (including rational numbers) and integer powers of 2πi.
After exploring the consequences of shuffle and reflection identities eqs. (2.12) and (2.13), Fay
identities are discussed as a genus-one analogue of the partial-fraction identities among products
of (z−a)−1, which arise from the differential forms dlog(z−a). The weight of eMZVs is preserved
under all these identities whereas the length obviously varies in Fay and shuffle relations. In
contradistinction to usual MZVs, the availability of f (0) ≡ 1 as a weighting function yields an
infinite number of eMZVs for a certain weight, so the counting of indecomposable eMZVs must
be performed at fixed length and weight.

Examples of constant eMZVs. The simplest examples of the eMZVs defined in eq. (2.11)
are of length one:

ω(n1) =
{
−2 ζn1 : n1 even

0 : n1 odd . (2.17)

The underlying single integration over the interval [0, 1] picks up the constant term in the
q-expansion of f (n) (see section 3.3 of ref. [5]) and yields the constants in eq. (2.17) with regu-
larized value ζ0 = −1

2 in ω(0) = 1.
Another distinction between even and odd labels ni occurs at length `ω = 2. The union

of shuffle and reflection identities eqs. (2.12) and (2.13) contains more independent relations
for even total weight than for odd weight, and the eMZVs are then completely determined by
eq. (2.17):

ω(n1, n2)
∣∣∣
n1+n2 even

=
{

2 ζn1 ζn2 : n1, n2 even
0 : n1, n2 odd . (2.18)

For eMZVs of odd total weight, on the other hand, shuffle and reflection relations at length two
coincide, and ω(n1, n2) are no longer bound to be constant. This correlation between (−1)wω
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and the length will be turned into a general rule in the next paragraph. In addition, there are
also constant eMZVs, which make their appearance only at sufficiently high length. For example,
ζ3 is identified in eq. (2.36) to be an eMZV of weight 3 and length 4. One can show that all
constant eMZVs evaluate to products of MZVs and integer powers of 2πi, see Proposition 5.3 of
ref. [1].

Interesting and boring eMZVs. The lack of a τ -dependence for eMZVs ω(n1, n2) of even
weight can be viewed as the analogue of the vanishing of ω(n1) for odd weight as observed in
eq. (2.17). The general pattern is as follows: whenever weight and length of an eMZV have the
same parity (i.e. (−1)wω = (−1)`ω), shuffle and reflection identities eqs. (2.12) and (2.13) allow
to determine this eMZV in terms of eMZVs of lower length. Novel indecomposable eMZVs can
only occur for opposite parity (−1)wω = −(−1)`ω such as the odd-weight ω(n1, n2). Accordingly,
an eMZV ω(n1, n2, . . . , nr) is called interesting, if the combination wω + `ω of weight and length
is odd, otherwise we refer to it as boring.

Boring eMZVs at length `ω = 3 can arise from four different choices of even and odd labels.
For those, the shuffle identities eq. (2.12) allow to reduce them to interesting eMZVs at length
two. Explicitly, we have

ω(o1, o2, o3) = 0
ω(e1, e2, o3) = − ζe1 ω(e2, o3)
ω(e1, o2, e3) = − ζe1 ω(o2, e3)− ζe3 ω(e1, o2)
ω(o1, e2, e3) = − ζe3 ω(o1, e2) , (2.19)

where ei and oi refer to even and odd labels, respectively. Similarly, boring eMZVs at length
`ω = 4 come in the following (reflection-independent) classes:

ω(o1, o2, o3, o4) = 0
ω(e1, e2, e3, e4) = −2 ζe1 ζe2 ζe3 ζe4 − ζe4 ω(e1, e2, e3)− ζe1 ω(e2, e3, e4)
ω(o1, o2, e3, e4) = − ζe4 ω(o1, o2, e3) (2.20)
ω(o1, e2, o3, e4) = 1

2 ω(o1, e2)ω(o3, e4)− ζe4 ω(o1, e2, o3)
ω(o1, e2, e3, o4) = 1

2 ω(o1, e2)ω(e3, o4)
ω(e1, o2, o3, e4) = 1

2 ω(e1, o2)ω(o3, e4)− ζe1 ω(o2, o3, e4)− ζe4 ω(e1, o2, o3) .

Although becoming more involved for higher length, the distinction of cases as well as the
decomposition of boring eMZVs can be cast into a nice form, as is explained in appendix A.1.
Below, however, we will be concerned with interesting eMZVs mostly. Note that the vanishing
of eMZVs with only odd entries is true at all lengths,

ω(o1, o2, . . . , or) = 0 . (2.21)

Fay relations among f (n) and elliptic iterated integrals. While reflection and shuffle
identities preserve the partition of the modular weight among the integrated f (ni), so-called Fay
relations mix eMZVs involving different values of ni. They can be traced back to the Fay identity
of their generating series eq. (2.4) [4]

Ω(z1, α1, τ)Ω(z2, α2, τ) = Ω(z1, α1 + α2, τ)Ω(z2 − z1, α2, τ)
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+ Ω(z2, α1 + α2, τ)Ω(z1 − z2, α1, τ) , (2.22)

which is valid for any complex z1, z2 and follows from the Fay trisecant equation [28]. Relations
among f (n) can be read off from eq. (2.22) by isolating monomials in α1, α2 [5]

f (n1)(t− x)f (n2)(t) = −(−1)n1f (n1+n2)(x) +
n2∑

j=0

(
n1 − 1 + j

j

)
f (n2−j)(x)f (n1+j)(t− x)

+
n1∑

j=0

(
n2 − 1 + j

j

)
(−1)n1+jf (n1−j)(x)f (n2+j)(t) . (2.23)

The simplest instance of these Fay relations can be viewed as a genus-one counterpart of partial-
fraction relations such as 1

tx = 1
x(t−x) + 1

t(x−t) :

f (1)(t− x)f (1)(t) = f (1)(t− x)f (1)(x)− f (1)(t)f (1)(x) + f (2)(t) + f (2)(x) + f (2)(t− x) . (2.24)

The Fay relations eq. (2.23) are a very powerful tool for rearranging the elliptic iterated integrals
in eq. (2.7). Together with the derivatives of Γ with respect to their argument z and labels ai [5],
they allow for example to recursively remove any appearance of ai = z in the label of an iterated
integral, e.g.

Γ ( n1 n2 ... nr
z 0 ... 0 ; z) = (−1)r ζr

r∏

j=1
δnj ,1 − (−1)n1 Γ

(
n1+n2 0 n3 ... nr

0 0 0 ... 0 ; z
)

+
n1∑

j=0
(−1)n1+j

(
n2 − 1 + j

j

)
Γ
(
n1−j n2+j n3 ... nr

0 0 0 ... 0 ; z
)

+
n2∑

j=0

(
n1 − 1 + j

j

)∫ z

0
dt f (n2−j)(t) Γ

(
n1+j n3 ... nr
t 0 ... 0 ; t

)
, (2.25)

see appendix A.2 for a generalization to multiple appearances of ai = z. The zeta value ζr in
the first line of eq. (2.25) stems from the limit z → 0 of the left hand side for which f (1)(z)
can be approximated by 1

z [5]. Note that the Kronecker-deltas δnj ,1 ensure that the notions of
weights for MZVs and elliptic iterated integrals are compatible in eq. (2.25).

Fay relations among eMZVs. A rich class of eMZV relations can be inferred from the limit
z → 1 of eq. (2.25). On the left hand side, periodicity of f (n) w.r.t. z → z + 1 leads to

lim
z→1

Γ ( n1 n2 ... nr
z 0 ... 0 ; z) = ω(nr, . . . , n2, n1) , n1 6= 1 or n2 6= 1 , (2.26)

where cases with n1 = n2 = 1 require an additional treatment of the poles of the associated
f (1) and are therefore excluded3. By eq. (2.11), the elliptic iterated integrals on the right hand
side reduce to eMZVs under z → 1 once the recursion eq. (2.25) has been applied iteratively to
remove any appearance of the argument from the labels. At length two, the resulting eMZV
relation is

ω(n2, n1) = −(−1)n1 ω(0, n1 + n2) +
n2∑

j=0

(
n1 − 1 + j

j

)
(−1)n1+j ω(n1 + j, n2 − j)

3For cases with n1 = 1 and n2 6= 1, we could not prove the general absence of extra contributions from the
poles of f (1). However, the validity of eq. (2.26) in these cases has been thoroughly tested to lengths r ≤ 6 using
the methods in section 2.3. Hence, eq. (2.26) at n1 = 1 and n2 6= 1 with general r remains a well-tested conjecture.
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+
n1∑

j=0

(
n2 − 1 + j

j

)
(−1)n1+j ω(n2 + j, n1 − j) , n1 6= 1 or n2 6= 1 , (2.27)

and length three requires two applications of the recursion in eq. (2.25):

ω(n3, n2, n1) = ζ2

n2∑

j=0
δn3,1δn1+j,1

(
n1 − 1 + j

j

)
ω(n2 − j)

− (−1)n1 ω(n3, 0, n1 + n2) +
n1∑

j=0
(−1)n1+j

(
n2 − 1 + j

j

)
ω(n3, n2 + j, n1 − j) (2.28)

+
n2∑

j=0

(
n1 − 1 + j

j

)
n3∑

k=0
(−1)n1+j+k

(
n1 + j − 1 + k

k

)
ω(n1 + j + k, n3 − k, n2 − j)

+
n2∑

j=0

(
n1 − 1 + j

j

) n1+j∑

k=0
(−1)n1+j+k

(
n3 − 1 + k

k

)
ω(n3 + k, n1 + j − k, n2 − j)

−
n2∑

j=0
(−1)n1+j

(
n1 − 1 + j

j

)
ω(0, n1 + n3 + j, n2 − j) , n1 6= 1 or n2 6= 1 .

It is straightforward to derive higher-length relations (involving any ζr with 2 ≤ r ≤ `ω − 1)
from further iterations of eq. (2.25) in the limit z → 1. The exclusion of n1 = n2 = 1 suppresses
ζ2 in eq. (2.27) and ζ3 in eq. (2.28), and, more generally, the appearance of ζr is relegated
to eMZV relations of length r + 1. By the relations derived from Γ

( n1 n2 ... nk nk+1 ... nr
z z ... z 0 ... 0 ; z

)
in

appendix A.2, analogous statements apply to generic MZVs, and any MZV will appear in the
rewriting of some Γ ( n1 n2 ... nr

a1 a2 ... ar ; z) with appropriate combinations of aj ∈ {0, z}.

Combining shuffle and Fay relations. Shuffle relations reduce boring eMZVs to interesting
eMZVs of lower length, see for instance eqs. (2.18) and (2.19). At first glance, this appears to
attribute more significance to Fay relations among interesting eMZVs, e.g. eq. (2.27) at odd
n1 + n2 and eq. (2.28) at even n1 + n2 + n3. The former yields length-two relations such as

ω(0, 5) = ω(2, 3) , ω(3, 4) = −2ω(0, 7) + ω(2, 5) , (2.29)

which by themselves leave 1 + b1
3(n1 + n2)c eMZVs at length `ω = 2 and weight wω = n1 + n2

independent [29]. However, Fay relations eq. (2.28) among boring eMZVs at length three turn
out to contain additional information about interesting ω(n1, n2). For example, writing eq. (2.28)
with (n1, n2, n3) = (1, 0, 2),

ω(0, 3, 0)− ω(1, 2, 0)− ω(2, 0, 1) + ω(3, 0, 0) = 0 , (2.30)

followed by a shuffle-reduction of the boring eMZVs via eq. (2.19) yields the length-two relation

ω(1, 2) = 2 ζ2 ω(0, 1)− ω(0, 3) . (2.31)

This relation would be inaccessible from Fay relations at length two and identifies ω(0, 3) to be
the unique indecomposable ω(n1, n2) at weight three, which is short of the above 1+b1

3(n1 +n2)c
counting. Hence – when combined with shuffle-relations – Fay relations among boring eMZVs
at length `ω + 1 provide more information than their counterparts among interesting eMZVs
at length `ω. The need for Fay relations at length `ω + 1 to classify indecomposable eMZVs at
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length `ω is reminiscent of double-shuffle relations among MZVs. For example, the relation

ζ5,7 = 14
9 ζ3,9 +28

3 ζ5 ζ7−
121285
12438 ζ12 (2.32)

is inaccessible from double-shuffle relations of depth two and requires higher-depth input [19].

Indecomposable eMZVs. By applying the shuffle-reduction eq. (2.19) to higher-weight in-
stances of the length-three Fay relation eq. (2.28), any length-two eMZV can be expressed in
terms of products of ζ2k and ω(0, 2n− 1):

ω(n1, n2)
∣∣∣
n1+n2 odd

= (−1)n1 ω(0, n1 + n2) + 2δn1,1 ζn2 ω(0, 1)− 2δn2,1 ζn1 ω(0, 1)

+ 2
d 1

2 (n2−3)e∑

p=1

(
n1 + n2 − 2p− 2

n1 − 1

)
ζn1+n2−2p−1 ω(0, 2p+ 1) (2.33)

− 2
d 1

2 (n1−3)e∑

p=1

(
n1 + n2 − 2p− 2

n2 − 1

)
ζn1+n2−2p−1 ω(0, 2p+ 1) ,

which implies that no eMZVs at length two other than ω(0, 2n − 1) are indecomposable. This
relation can be straightforwardly proven using the techniques of subsection 2.3.

Accordingly, the richest source of relations between interesting eMZVs at length three are
the length-four Fay relations at even weight together with the shuffle reduction eq. (2.20) of
the boring eMZVs therein. The indecomposable eMZVs can be chosen to include ω(0, 0, 2n) by
analogy with eq. (2.33), and additional indecomposable eMZVs such as ω(0, 3, 5) occur at weight
wω ≥ 8, e.g.

ω(1, 1, 2) = 13
12 ζ4− ζ2 ω(0, 1)2 + ω(0, 1)ω(0, 3) + 3 ζ2 ω(0, 0, 2)− 1

2 ω(0, 0, 4) (2.34)

ω(0, 6, 2) = −21
2 ζ8 +2ω(0, 3)ω(0, 5)− 14 ζ6 ω(0, 0, 2)− 6 ζ4 ω(0, 0, 4)− 9

2 ω(0, 0, 8)− 2
5 ω(0, 3, 5) .

Similarly, the set of indecomposable length-three eMZVs at weights ten and twelve can be chosen
as {ω(0, 0, 10), ω(0, 3, 7)} and {ω(0, 0, 12), ω(0, 3, 9)}, respectively. The weight-twelve relation

ω(0, 5, 7) =− 140 ζ10 ω(0, 0, 2)− 14 ζ8 ω(0, 0, 4) + 28
3 ω(0, 5)ω(0, 7)

− 119
6 ω(0, 0, 12) + 14

9 ω(0, 3, 9)− 550396
6219 ζ12 (2.35)

will play an essential rôle later on.
While even-weight single MZVs are special cases of length-one eMZVs by eq. (2.17), odd

MZVs do not show up in any relation for an eMZV of `ω ≤ 3. When applying the above
procedure to higher lengths, ζ3 is identified to be an eMZV by length-four relations such as

ω(0, 1, 2, 0) = 1
4 ω(0, 3)− 5

2ω(0, 0, 0, 3)− ζ3
4 . (2.36)

The appearance of ζ3 in eMZV relations at length `ω = 4, 5 is governed by eq. (2.26) at r = 4, 5,
and similar relations are expected to hold for any odd single zeta value by eq. (2.25) and
eq. (A.10). Further support stems from the description of the eMZVs’ constant terms through
the Drinfeld associator [30–32] in eq. (2.43) below.
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Usual MZVs show up in many relations between eMZVs such as eq. (2.36). While crucial for
matching the constant term for the eMZVs in question, we will not count them as indecomposable
eMZVs. Instead, they will arise as suitably chosen boundary conditions for a differential equation
to be elaborated upon below.

Table 1 shows a possible (non-canonical) choice of indecomposable eMZVs for weights up
to 14 and length up to and including five. The need for higher-length Fay relations increases
the computational complexity in the classification of indecomposable eMZVs using the above
procedure. Hence, comparing the τ -dependence will enter as an additional method in the next
subsection to extend the results in the table to higher lengths and weights. Still, shuffle, reflection
and Fay relations were assembled completely at `ω = 2, at `ω = 3 with wω ≤ 14, at `ω = 4
with wω ≤ 9 as well as at `ω = 5 with wω ≤ 6, and additional eMZV relations at those weights
and lengths have been ruled out on the basis of their q-expansion. Continuing the search for

wω

`ω 2 3 4

1 ω(0, 1) ω(0, 0, 1, 0)
3 ω(0, 3) ω(0, 0, 0, 3)
5 ω(0, 5) ω(0, 0, 0, 5)

ω(0, 0, 2, 3)
7 ω(0, 7) ω(0, 0, 0, 7)

ω(0, 0, 2, 5)
ω(0, 0, 4, 3)

9 ω(0, 9) ω(0, 0, 0, 9)
ω(0, 0, 2, 7)
ω(0, 0, 4, 5)
ω(0, 1, 3, 5)

11 ω(0, 11) ω(0, 0, 0, 11)
ω(0, 0, 2, 9)
ω(0, 0, 4, 7)
ω(0, 1, 3, 7)
ω(0, 3, 3, 5)

13 ω(0, 13) ω(0, 0, 0, 13)
ω(0, 0, 2, 11)
ω(0, 0, 4, 9)
ω(0, 1, 3, 9)
ω(0, 1, 5, 7)
ω(0, 3, 3, 7)
ω(0, 3, 5, 5)

wω

`ω 2 3 4 5

2 ω(0, 0, 2) ω(0, 0, 0, 0, 2)
4 ω(0, 0, 4) ω(0, 0, 0, 0, 4)

ω(0, 0, 0, 1, 3)
6 ω(0, 0, 6) ω(0, 0, 0, 0, 6)

ω(0, 0, 0, 1, 5)
ω(0, 0, 0, 2, 4)
ω(0, 0, 2, 2, 2)

8 ω(0, 0, 8) ω(0, 0, 0, 0, 8)
ω(0, 3, 5) ω(0, 0, 0, 1, 7)

ω(0, 0, 0, 2, 6)
ω(0, 0, 1, 2, 5)
ω(0, 0, 2, 2, 4)

10 ω(0, 0, 10) ω(0, 0, 0, 0, 10)
ω(0, 3, 7) ω(0, 0, 0, 1, 9)

and 7 more
12 ω(0, 0, 12) ω(0, 0, 0, 0, 12)

ω(0, 3, 9) ω(0, 0, 0, 1, 11)
ω(0, 0, 0, 2, 12)
and 11 more

14 ω(0, 0, 14) ω(0, 0, 0, 0, 14)
ω(0, 3, 11) ω(0, 0, 0, 1, 13)
ω(0, 5, 9) ω(0, 0, 0, 2, 12)

and many more

Table 1: A possible choice of indecomposable eMZVs up to weight 14 and length 5. A table containing
the elements missing here is available at https://tools.aei.mpg.de/emzv.

indecomposable eMZVs as described in previous and subsequent subsections leads to table 2, in
which the number of indecomposable eMZVs for a certain length and weight are noted. Basis
rules for rewriting each eMZV in terms of those indecomposable elements can be obtained in
digital form from the web page https://tools.aei.mpg.de/emzv and are available up to and
including weights 30, 18, 12, 10 for lengths 3, 4, 5, 6, respectively.

13

Appendix D. Relations between elliptic multiple zeta values and a special
derivation algebra

164



`ω

wω 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 1 1 1 1 1 1 1 1 1 1
3 1 1 1 2 2 2 3 3 3
4 1 1 2 3 4 5 7 8 10 x
5 1 2 4 6 9 13 x x x
6 1 2 4 8 13 x x x x x
7 1 2 x x x x x x x

Table 2: Number N(`ω, wω) of indecomposable eMZVs at length `ω and weight wω.

2.3 Constant term and q-expansion

The system of relations discussed in the previous section did not require any information on
the eMZVs’ functional dependence on the modular parameter τ . In this section, we determine
the Fourier expansion in q = e2πiτ based on a first-order differential equation in τ along with a
boundary value at τ → i∞. This will not only provide crosschecks for the above eMZV-relations
but will also lead to the more efficient approach to classifying indecomposable eMZVs at higher
length and weight in section 4.

Constant term. The constant term of an eMZV can be determined explicitly using results
of ref. [1]. By construction, the elliptic KZB associator A(τ) is the generating series of eMZVs,

eπi[y,x]A(τ) ≡
∑

r≥0
(−1)r

∑

n1,n2,...,nr≥0
ω(n1, n2, . . . , nr)adnrx (y) . . . adn2

x (y)adn1
x (y) , (2.37)

and captures the monodromy of the elliptic KZB equation [22, 23] along the path [0, 1]. The
prefactor eπi[y,x] is adjusted to the regularization scheme in eq. (2.16). The variables x and
y generate a complete, free algebra C〈〈x, y〉〉 of formal power series with complex coefficients,
whose multiplication is the concatenation product, and the convention for the adjoint action is

adx(y) ≡ [x, y] , adnx(y) = [x, . . . [x, [x,︸ ︷︷ ︸
n times

y]] . . .] . (2.38)

Note that the appearance of eMZVs in eq. (2.37) along with non-commutative words in x and y
allows for an alternative enumeration scheme using a two-letter alphabet, see subsection 2.1.

Enriquez proved that A(τ) admits the asymptotic expansion as τ → i∞ [1]

A(τ) = Φ(ỹ, t) e2πiỹ Φ(ỹ, t)−1 +O(e2πiτ ) , (2.39)

where O(e2πiτ ) refers to the non-constant terms in eq. (2.15) exclusively. In the above equation,
the genus-one alphabet consisting of x, y is translated into a genus-zero alphabet involving

t ≡ [y, x] , ỹ ≡ − adx
e2πiadx − 1(y) , (2.40)

and Φ denotes the Drinfeld associator [30–32]

Φ(e0, e1) ≡
∑

Ŵ∈〈e0,e1〉
ζ (W ) · Ŵ . (2.41)
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The sum over Ŵ ∈ 〈e0, e1〉 includes all non-commutative words in letters e0 and e1, and the
word W is obtained from Ŵ by replacing letters e0 and e1 by 0 and 1, respectively. Then, ζ (W )
denote shuffle-regularized MZVs [33] which are uniquely determined from eq. (3.1), the shuffle
product eq. (3.2) and the definition ζ (0) = ζ (1) = 0 for words of length one. Consequently,
the first few terms of Φ(e0, e1) are given by

Φ(e0, e1) = 1− ζ2[e0, e1]− ζ3[e0 + e1, [e0, e1]] + . . . . (2.42)

From eqs. (2.37) and (2.39), the generating series of constant terms ω0(n1, ..., nr) of eMZVs is
immediately obtained as

∑

r≥0
(−1)r

∑

n1,...,nr≥0
ω0(n1, . . . , nr)adnrx (y) . . . adn1

x (y) = eπi[y,x] Φ(ỹ, t) e2πiỹ Φ(ỹ, t)−1 . (2.43)

In order to transfer information from the right hand side of eq. (2.43) to the constant terms of
eMZVs on the left hand side, it remains to expand words in the alphabet {ỹ, t} in eq. (2.40) as
formal series of words in the alphabet {adnx(y) |n ≥ 0} and then to compare the coefficients of
both sides.

Perhaps surprisingly, the case where all ni 6= 1 is very simple to treat. In that case, only the
middle term e2πiỹ from eq. (2.43) yields a non-trivial contribution, and therefore we have

ω0(n1, n2, . . . , nr)
∣∣∣
ni 6=1

=





0 if at least one ni is odd, and all ni 6= 1
1
r!

r∏

i=1
(−2 ζni) if all ni are even . (2.44)

In particular, one finds
ω(0, 0, . . . , 0︸ ︷︷ ︸

n times

) = 1
n! , (2.45)

which is perfectly in line with f (0) ≡ 1. On the other hand, in presence of ni = 1 at some places,
a general formula for the constant term is very cumbersome. Simple instances include

ω0(1, 0) = − iπ2 , ω0(1, 0, 0) = − iπ4 , ω0(1, 0, 0, 0) = − iπ12 −
ζ3

24 ζ2

ω0(0, 1, 1, 0, 0) = ζ2
15 , ω0(1, 0, 1, 1, 0, 0) = − iπ ζ2

30 − ζ3
8 −

17 ζ5
96 ζ2

(2.46)

with generalizations in eq. (B.4). Replacing ni = 0 in the above identities by even values ni = 2k
amounts to multiplication with −2 ζ2k on the right hand side.

q-expansion. The q-dependent terms in the expansion can be determined using the known
form of the τ -derivative of eMZVs. In Théorème 3.3 of ref. [1], the derivative of a generating
functional for eMZVs is presented, which translates as follows into derivatives of individual
eMZVs in our conventions:

2πi d
dτ ω(n1, . . . , nr) = −4π2q

d
dq ω(n1, . . . , nr)

= n1 Gn1+1 ω(n2, . . . , nr)− nr Gnr+1 ω(n1, . . . , nr−1)

+
r∑

i=2

{
(−1)ni(ni−1 + ni) Gni−1+ni+1 ω(n1, . . . , ni−2, 0, ni+1, . . . , nr) (2.47)
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−
ni−1+1∑

k=0
(ni−1 − k)

(
ni + k − 1

k

)
Gni−1−k+1 ω(n1, . . . , ni−2, k + ni, ni+1, . . . , nr)

+
ni+1∑

k=0
(ni − k)

(
ni−1 + k − 1

k

)
Gni−k+1 ω(n1, . . . , ni−2, k + ni−1, ni+1, . . . , nr)

}
.

The Eisenstein series Gk ≡ Gk(τ) on the right hand side are defined by4

G0(τ) ≡ −1

Gk(τ) ≡





∑

m,n∈Z
(m,n)6=(0,0)

1
(m+ nτ)k : k > 0 even ,

0 : k > 0 odd .

(2.48)

Positive even values of k admit a series expansion in the modular parameter:

Gk(τ) = 2 ζk +2(−1)k/2(2π)k
(k − 1)!

∞∑

m,n=1
mk−1qmn k > 0 even . (2.49)

Using the above formulæ and the known expansion of the Eisenstein series Gk in eq. (2.49), one
can recursively obtain the explicit q-expansion for any eMZV: The length of eMZVs on the right
hand side of eq. (2.47) is decreased by one compared to the left hand side, and the recursion
terminates with the constant eMZVs at length one given by eq. (2.17).

In addition, one finds from eq. (2.47) that only divergent eMZVs with n1 = 1 or nr = 1 lead
to the non-modular G2, see the discussion around eq. (2.16). In all other situations which lead
to the non-modular G2 in the last three lines, the respective terms cancel out. Not surprisingly,
the interesting and boring character of eMZVs is preserved by eq. (2.47): the decreased length
on the right hand side is compensated by an increased weight.

Also, note that the differential equation eq. (2.47) contains no MZV terms. In fact, the
only way through which MZVs enter the stage of eMZVs is by means of the constant term
eq. (2.39) of the KZB associator. As mentioned earlier, this constant term can be thought of
as a boundary-value prescription for the differential equation eq. (2.47), thereby determining
eMZVs uniquely.

eMZV relations from the q-expansion. Based on the q-expansions described above, rela-
tions between eMZVs can be checked and ruled out by comparing their Fourier representations.
In practice, one writes down an ansatz comprised from interesting eMZVs and products thereof
with uniform weight and an upper bound on the length of interest, each term supplemented
with fudge coefficients.

Näıvely, one could calculate the q-expansions of all constituents up to a certain order qNmax

and impose a matching along with each Fourier mode qn for 0 ≤ n ≤ Nmax. This allows to fix the
above fudge coefficients and to check the relations’ validity up to – in principle – arbitrary order.
In an early stage of the project, our computer implementation of this approach with Nmax = 160
was far more efficient compared to the analysis of reflection, shuffle and Fay identities and lead

4The case k = 2 requires the Eisenstein summation prescription

∑

m,n∈Z
am,n ≡ lim

N→∞
lim
M→∞

N∑

n=−N

M∑

m=−M
am,n .
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to substantial parts of the data shown in tables 1 and 2.
However, since the comparison of q-expansions has to be cut off at some chosen power of

q, a proof for relations using the method is impossible by construction. Even worse, this näıve
method fails to capture the structural insight from eq. (2.47) that any q-dependence in eMZVs
stems from iterated integrals of Eisenstein series. This crucial property is exploited in section 4,
confirming the entries of table 2 in a rigorous and conceptually by far more elegant manner.

While the näıve comparison of Fourier coefficients merely provides a lower bound for the
number of indecomposable eMZVs for a given weight and length, the description of eMZVs in
terms of iterated Eisenstein integrals in section 4 yields complementary upper bounds. Under
the additional assumption that different iterated Eisenstein integrals are linearly independent,
these upper bounds are indeed saturated. However, since we do not attempt to prove their
linear independence, the näıve matching of Fourier coefficients closes the associated loophole at
the weights and lengths under consideration.

3 Multiple zeta values and the φ-map

In this section we gather information on the structure of MZVs, which are to be compared with
those found for eMZVs in section 4 below. While represented as nested sums in eq. (2.1) in
section 2, they can alternatively be defined as iterated integrals

ζn1,n2,...,nr =
∫

0≤zi≤zi+1≤1

ω1 ω0 . . . ω0︸ ︷︷ ︸
n1−1

ω1 ω0 . . . ω0︸ ︷︷ ︸
n2−1

. . . ω1 ω0 . . . ω0︸ ︷︷ ︸
nr−1

= ζ(1 0 . . . 0︸ ︷︷ ︸
n1−1

1 0 . . . 0︸ ︷︷ ︸
n2−1

. . . 1 0 . . . 0︸ ︷︷ ︸
nr−1

) (3.1)

over the differential forms ω0 ≡ dz
z and ω1 ≡ dz

1−z with all zi on the real line. The MZV ζn1,...,nr is
said to have weight w = ∑r

i=1 ni and depth r. Written in terms of words W composed from the
letters 0 and 1, which correspond to the differential forms ω0 and ω1 in eq. (3.1), respectively,
ζ’s satisfy the shuffle product:

ζ(W1) ζ(W2) = ζ(W1 W2) . (3.2)

There is also a second product structure on MZVs, the stuffle product. Its simplest instance
reads

ζm ζn = ζm,n + ζn,m + ζm+n . (3.3)

It follows from either eq. (3.2) or eq. (3.3) that the Q-span Z of all MZVs is a subalgebra of R.
Conjecturally, Z is graded by the weight of the MZVs

Z =
∞⊕

w=0
Zw , (3.4)

where the dimensions dw of Zw have been conjectured to be dw = dw−2 + dw−3 where d0 = 1,
d1 = 0 and d2 = 1 [14]. A possible choice of basis elements for each weight w is given in table 3,
for higher weights consult ref. [15].

Single ζ-functions of even weight are rather different from their odd-weight counterparts: all
single zeta values of even weight 2n can be expressed as rational multiples of π2n, which renders
them transcendental numbers immediately. For odd single zeta values, however, there is no
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w 2 3 4 5 6 7 8 9 10 11 12
Zw ζ2 ζ3 ζ2

2 ζ5 ζ2
3 ζ7 ζ3,5 ζ9 ζ3,7 ζ3,3,5 ζ2 ζ3

3 ζ1,1,4,6 ζ2 ζ3,7
ζ2 ζ3 ζ3

2 ζ2 ζ5 ζ3 ζ5 ζ3
3 ζ3 ζ7 ζ3,5 ζ3 ζ2 ζ9 ζ3,9 ζ2

2 ζ3,5
ζ2

2 ζ3 ζ2 ζ2
3 ζ2 ζ7 ζ2

5 ζ11 ζ2
2 ζ7 ζ3 ζ9 ζ2 ζ2

5
ζ4

2 ζ2
2 ζ5 ζ2 ζ3,5 ζ2

3 ζ5 ζ3
2 ζ5 ζ5 ζ7 ζ2 ζ3 ζ7

ζ3
2 ζ3 ζ2 ζ3 ζ5 ζ4

2 ζ3 ζ4
3 ζ2

2 ζ3 ζ5
ζ2

2 ζ
2
3 ζ3

2 ζ
2
3

ζ5
2 ζ6

2
dw 1 1 1 2 2 3 4 5 7 9 12

Table 3: A possible choice for the basis elements of Zw for 2 ≤ w ≤ 12.

analogous property: there are no known relations relating two single zeta values of distinct odd
weight, and in fact no such relations are expected. Also, although expected, none of the odd
ζ-values has been proven to be transcendental so far: the only known facts are the irrationality
of ζ3 as well as the existence of an infinite number of odd irrational ζ’s [34, 35].

3.1 Hopf algebra structure of MZVs

The basis elements in table 3 have been chosen by convenience preferring short and simple ζ’s.
However, the choice of basis elements does not seem to be intuitive at all, as is exemplified by
the appearance of ζ1,1,4,6 at weight 12. It would be desirable to find a language in which one
can write down a basis for MZVs in a more transparent way, with all relations built in once the
translation is performed. This language does indeed exist: it is furnished by the graded Hopf
algebra comodule U , which is composed from words

f2i1+1 . . . f2ir+1 f
k
2 , with r, k ≥ 0 and i1, . . . , ir ≥ 1 (3.5)

of weight w = 2(i1 + . . . + ir) + r + 2k. While words in the letters f2i+1 span a Hopf algebra
endowed with a commutative shuffle product, the Hopf algebra comodule U is obtained upon
adjoining powers of f2, which commute with all f2i+1 [12]. Writing down all words of the form in
eq. (3.5), one indeed finds the dimension of Uw to match the expected dimension dw of Zw, which
is a first indicator that the Hopf algebra comodule U does indeed shed light on the algebraic
structure of MZVs.

In a next step MZVs need to be related to elements in U . Unfortunately, due to the difficult
problem of excluding algebraic relations between MZVs, this cannot be done directly. In order
to circumvent this issue, one lifts MZVs ζ to so-called motivic MZVs ζm, which have a more
elaborate definition [36,12,37], but which still satisfy the same shuffle and stuffle product formulæ
as the MZVs eqs. (3.2) and (3.3). Moreover, passing from MZVs to motivic MZVs has the
advantage that many of the desirable, but currently unproven facts about MZVs are in fact
proven for motivic MZVs. In particular, the commutative algebra H of motivic multiple zeta
values is by definition graded for the weight, and carries a well-defined motivic coaction, first
written down by Goncharov [36] and further studied by Brown [12,11,37].

With the availability of H the only remaining piece is the construction of an isomorphism φ

of graded algebra comodules
φ : H → U , (3.6)

whose existence is guaranteed by the main result of [12]. The map φ, which assigns to each
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motivic MZV a linear combination of the words defined in eq. (3.5), is thoroughly described and
explored in ref. [11]. As pointed out in the reference, the map φ is non-canonical and depends
on the choice of an algebra basis of H. The requirement that all odd single motivic MZVs as
well as ζ2 should be contained in this basis leads to

φ(ζmk ) = fk , k = 2, 3, 5, 7, . . . . (3.7)

Unfortunately, this convention does not determine φ uniquely, since not every motivic MZV can
be expressed in terms of motivic single zeta values only. However, as pointed out in ref. [11],
the map φ preserves all relations between motivic MZVs for any choice of algebra basis of H,
for example (cf. eq. (3.3)):

φ(ζmm ζmn ) = φ(ζmm,n) + φ(ζmn,m) + φ(ζmm+n) . (3.8)

In order to give explicit examples of the decomposition of motivic MZVs into the f -alphabet, let
us choose the following algebra basis up to weight 12, upon which table 3 is modeled implicitly

{ζm2 , ζm3 , ζm5 , ζm7 , ζm3,5, ζm9 , ζm3,7, ζm11, ζ
m
3,3,5, ζ

m
1,1,4,6, ζ

m
3,9} . (3.9)

With this choice of basis, one finds for example,

φ(ζm3,9) = −6 f5f7 − 15 f7f5 − 27 f9f3

φ(ζm3,3,5) = −5 f5f3f3 + 4
7 f5f

3
2 −

6
5 f7f

2
2 − 45 f9f2 . (3.10)

The application of the φ-map in the context of the low-energy expansion of superstring tree-level
amplitudes as well as several higher-weight examples can be found in ref. [38].

4 Indecomposable eMZVs, Eisenstein series and the derivation
algebra

As described in section 2, indecomposable eMZVs at a certain weight and length can be in
principle inferred from considering reflection, shuffle and Fay relations. For higher weights and
lengths, however, it is favorable to employ a computer implementation based on comparing q-
expansions of eMZVs which in turn can be obtained recursively from eq. (2.47). In this section
we are going to provide an algorithm which does not only deliver the appropriate indecomposable
elements as listed in table 1 but as well explains their number at a given length and weight.

As described in the previous section, the appropriate mathematical idea for standard motivic
MZVs is to map them to the non-commutative words composed from letters fw in eq. (3.5) using
the map φ. For the elliptic case we will construct an isomorphism ψ relating the ω-representation
of eMZVs to non-commutative words composed from letters gw, which in turn arise as labels of
iterated Eisenstein integrals γ to be defined below.

4.1 Iterated Eisenstein integrals

Given that the q-expansion of eMZVs can be iteratively generated from the Eisenstein series
Gk employing eq. (2.47), we will now describe eMZVs based on combinations of Gk. Instead of
representing eMZVs as elliptic iterated integrals as in section 2, we will write them as iterated
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integrals over Eisenstein series Gk where the iterated integration is now performed over the
modular parameter τ (or equivalently q).

Iterated integrals over Eisenstein series arise as a subclass of iterated integrals of modular
forms, which have been studied in refs. [17,18]. In this section, we will briefly review some of the
key definitions in order to embed the subsequent presentation of eMZVs into a broader context.

Iterated integrals of modular forms or iterated Shimura integrals [17, 18] are defined via
∫

i∞>τ1>τ2>···>τ
dτ1 (X1 − τ1Y1)k1−2Fk1(τ1) dτ2 (X2 − τ2Y2)k2−2Fk2(τ2) · · ·

· · · dτn (Xn − τnYn)kn−2Fkn(τn) , (4.1)

where Fk(τ) is a modular form of weight k and the modular group acts on commutative vari-
ables Xi and Yi as to render eq. (4.1) modular invariant. The divergences in these integrals
caused by the constant terms in the q-expansion of the modular forms can be regularized in a
manner described in ref. [18]. The key idea of this regularization procedure is to separate the
constant part from the remaining q-series for each Fkj (q) and to associate a different integration
prescription to it. The mathematical justification of this procedure is furnished by the theory
of tangential base points [39]. In the present case, one regularizes the integral with respect to
the tangential base point ~1∞ [18].

In the context of eMZVs in eq. (2.11), we encounter special cases of the iterated Shimura
integrals defined above, evaluated at Xi = 1 and Yi = 0. Furthermore, the τ -derivative of eMZVs
in eq. (2.47) involves no modular forms Fk other than Eisenstein series Gk. This motivates to
study the following iterated Eisenstein integrals as building blocks for eMZVs,

γ(k1, k2, . . . , kn; q) ≡ 1
4π2

∫

0≤q′≤q
dlog q′ γ(k1, . . . , kn−1; q′) Gkn(q′)

= 1
(4π2)n

∫

0≤qi<qi+1≤q
dlog q1 Gk1(q1) dlog q2 Gk2(q2) . . . dlog qn Gkn(qn) , (4.2)

where the number n of integrations will be referred to as the length `γ , and the weight is given
by wγ = ∑n

i=1 ki. The definition in eq. (4.2) as an iterated integral immediately implies

d
dlog q γ(k1, k2, . . . , kn; q) = Gkn(q)

4π2 γ(k1, k2, . . . , kn−1; q) (4.3)

γ(n1, n2, . . . , nr; q) γ(k1, k2, . . . , ks; q) = γ
(
(n1, n2, . . . , nr) (k1, k2, . . . , ks); q

)
, (4.4)

where the dependence on q will be suppressed in most cases: γ(. . .) ≡ γ(. . . ; q). The integrals in
eq. (4.2) generally diverge due to the constant term in Gk1 = 2 ζk1 +O(q) and can be regularized
using the procedure discussed around eq. (4.7) while preserving eqs. (4.3) and (4.4).

As will be explained in detail below, eMZVs can be expressed in terms of particular linear
combinations of iterated Eisenstein integrals in eq. (4.2) such that all possible divergences can-
cel. An alternative description of eMZVs which manifests the absence of divergences and admits
convenient formulæ for their q-expansion will be given in subsection 4.6. The convergent linear
combinations of eq. (4.2) occurring in eMZVs will turn out to be governed by a special derivation
algebra u. The situation is summarized in figure 1: eMZVs are a special case of iterated Eisen-
stein integrals eq. (4.2) which in turn span a subspace of iterated Shimura integrals eq. (4.1).
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eMZVs
iterated

Eisenstein
integrals

iterated
Shimura
integrals

Figure 1: Relation between different type of iterated integrals discussed.

Regularization. Even though eMZVs can be assembled from convergent iterated integrals
over modular parameters – see subsection 4.6 – we shall sketch a regularization procedure for the
iterated Eisenstein integrals in eq. (4.2) to render individual terms in the subsequent description
of eMZVs well-defined. Let us consider the simplest case, namely that of an iterated integral of
length one:

γ(k) = 1
4π2

∫ q

0
Gk(q′) dlog q′. (4.5)

The term (Gk(q′)− 2 ζk) dlog q′ is straightforward to integrate from 0 to q, since it has no poles
on the integration domain 0 ≤ q′ ≤ q. On the other hand, integration of the term 2 ζk dlog q′ in
isolation requires regularization, due to the presence of a simple pole at q′ = 0. The regularization
scheme employed in this case, however, is entirely analogous to the regularization scheme for
multiple polylogarithms, MZVs or eMZVs: One introduces a small parameter ε > 0, then
expands the integral

2 ζk
∫ q

ε
dlog q′ = 2 ζk(log q − log ε) (4.6)

as a polynomial in log(ε) and finally takes the constant term in this expansion. Using this
procedure in the length one case, one obtains from eq. (4.5)

γ(k) = 1
4π2

∫ q

0
Gk(q′) dlog q′ = 1

4π2


2 ζk log q + 2(−1)k/2(2π)k

(k − 1)!

∞∑

m,n=1

mk−2

n
qmn


 . (4.7)

The regularization procedure for a general iterated Eisenstein integral γ(k1, k2, . . . , kn) as in 4.2
is deduced from the length one case, using the shuffle product formula. Full details can be found
in [18].

4.2 eMZVs as iterated Eisenstein integrals

As a first example on how to express eMZVs in terms of iterated Eisenstein integrals, let us
consider eq. (2.47) for two simple types of eMZVs (recalling eq. (2.2) and G0 ≡ −1):

2πi d
dτ ω(0, n) = −4π2q

d
dq ω(0, n) = −2n ζn+1 G0−nGn+1, n odd (4.8a)

2πi d
dτ ω(0, 0, n) = −4π2q

d
dq ω(0, 0, n) = nω(0, n+ 1) G0 , n even . (4.8b)

Integration over dlog q relates the eMZVs on the left hand side to iterated Eisenstein integrals
of the form eq. (4.2), and the absence of constant terms within τ -derivatives guarantees that
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the integral converges. This insight will actually be the key ingredient to the simplified repre-
sentation of eMZVs described in subsection 4.6 below. The rewriting in eqs. (4.8a) and (4.8b)
can be generalized for all eMZVs: using the differential equation (2.47) one can represent their
derivative as a sum over Eisenstein series G2k,

d
dlog q ω(n1, n2, . . . , nr) = 1

4π2

∞∑

k=0
ξ2k(n1, n2, . . . , nr) G2k , (4.9)

where the coefficients ξ2k(n1, . . . , nr) are linear combinations of eMZVs of weight n1 + . . .+nr +
1− 2k and length r − 1. An example of this decomposition is spelled out below eq. (4.11).

For the eMZVs appearing in the coefficients ξ2k(n1, . . . , nr) of eq. (4.9), the procedure can be
repeated to successively reduce the length. Finally, any eMZV can be rewritten in terms of the
iterated Eisenstein integrals in eq. (4.2). Since the right hand side of eq. (4.9) is a τ -derivative
and cannot have a constant term in q, its integral over d log q is convergent and the first entries of
the resulting iterated Eisenstein integrals for any eMZV are interlocked as γ(k, . . .)+2ζk γ(0, . . .).

Examples. Let us return to the examples eqs. (4.8a) and (4.8b). The differential equation
eq. (4.3) immediately implies

ω(0, n) = δ1,n
πi

2 + n
(
γ(n+ 1) + 2 ζn+1 γ(0)

)
, n odd (4.10a)

ω(0, 0, n) = −1
3 ζn−n(n+ 1)

(
γ(n+ 2, 0) + 2 ζn+2 γ(0, 0)

)
, n even , (4.10b)

where δ1,n
πi
2 and −1

3 ζn arise as integration constants w.r.t. log q. Even though all the above
iterated Eisenstein integrals γ(n + 1), γ(n + 2, 0), γ(0) and γ(0, 0) individually require regular-
ization – see the discussion around eq. (4.7) – any divergence cancels in the linear combinations
of schematic form γ(k, . . .) + 2ζk γ(0, . . .) in eqs. (4.10a) and (4.10b).

The conversion of eMZVs into γ’s amounts to recursively applying the differential equation
eq. (2.47) and casting it into the form eq. (4.9). At each step, an instance of Gk is separated
until one has reached eMZVs of the form in eqs. (4.10a) and (4.10b) exclusively. After converting
those into γ’s, one reverts the direction and successively integrates using eq. (4.2), supplementing
integration constants from eq. (2.43).

Let us demonstrate the conversion into iterated Eisenstein integrals γ for ω(0, 3, 5). Employ-
ing eq. (2.47), one finds

4π2 d
dlog q ω(0, 3, 5) = −15 G4 ω(0, 5) + 42ω(0, 9) + 3ω(4, 5) , (4.11)

i.e. we have ξ4(0, 3, 5) = −15ω(0, 5) and ξ0(0, 3, 5) = −42ω(0, 9) − 3ω(4, 5) in the notation
of eq. (4.9). While ω(0, 5) and ω(0, 9) can be readily converted into γ’s using eqs. (4.10a)
and (4.10b), we will have to take another derivative5 for ω(4, 5):

4π2 d
dlog q ω(4, 5) = 9 G10 ω(0)− 15 G4 ω(6) + 42ω(10)

= 9 G10 +30 ζ6 G4 +84 ζ10 G0 . (4.12)
5Alternatively, one could use eq. (2.33), but for illustrational purposes we will perform the recursion explicitly.
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Performing the integration eq. (4.2) then leads to

ω(4, 5) = 9 γ(10) + 30 ζ6 γ(4) + 84 ζ10 γ(0) , (4.13)

which – after plugged into eq. (4.11) – yields

4π2 d
dlog q ω(0, 3, 5) = −75 G4(γ(6) + 2 ζ6 γ(0)) + 405 γ(10) + 90 ζ6 γ(4) + 1008 ζ10 γ(0) . (4.14)

After a last integration of the type in eq. (4.2) one finally obtains

ω(0, 3, 5) = −405 γ(10, 0)− 75 γ(6, 4)− ζ6(150 γ(0, 4) + 90 γ(4, 0))− 1008 ζ10 γ(0, 0) , (4.15)

which casts the first indecomposable length-three eMZV beyond eq. (4.10b) into the language of
iterated Eisenstein integrals and fits into the pattern γ(k, . . .) + 2ζk γ(0, . . .) for the first entries.
Further examples of expressing eMZVs as iterated Eisenstein integrals are listed in appendix B.2.

Conversion of weight and length. Length and weight are different between the represen-
tation of eMZVs in terms of iterated Eisenstein integrals γ and the ω-representation. Denoting
length and weight for γ and ω by (`γ , wγ) and (`ω, wω), respectively, one finds straightforwardly

`γ = `ω − 1 and wγ = `ω − 1 + wω = `γ + wω , (4.16)

such that

γ(k1, k2, . . . , kn)↔ eMZV in ω-rep. with `ω = n+ 1 and wω = −n+
n∑

j=1
kj (4.17a)

ω(n1, n2, . . . , nr)↔ Eisenstein integral with `γ = r − 1 and wγ = r − 1 +
r∑

j=1
nj . (4.17b)

Those formulæ, however, are valid for the maximal component only: as illustrated e.g. in
eq. (4.10b), the presentation of eMZVs in terms of iterated Eisenstein integrals involves dif-
ferent lengths `γ and weights wγ . Correspondingly, the maximal component is defined to be
comprised from all terms in an eMZVs γ-representation, which are of length `γ and weight wω.
Below, we will exclude γ’s, which can be represented as shuffle products, from the maximal
component. Iterated Eisenstein integrals of length `γ − 2, `γ − 4, . . . as well as any terms in
which weight is carried by MZVs do not belong to the maximal component.

The examples in eq. (4.10b) and eq. (4.15) give rise to maximal components

ω(0, 0, n) = −n(n+ 1) γ(n+ 2, 0) + non-maximal terms (4.18)
ω(0, 3, 5) = −405 γ(10, 0)− 75 γ(6, 4) + non-maximal terms , (4.19)

which are defined up to shuffle products of lower-length iterated Eisenstein integrals.
Considering eq. (4.17a), one can create γ’s corresponding to ω-representations of negative

weight. Since weighting functions f (m) are not defined for negative weight, γ(k1, k2, . . . , kn) with∑n
j=1 kj < n are clearly incompatible with the definition of eMZVs in eq. (2.11). However, the

connection with the derivation algebra u in subsection 4.3 below will assign a meaning to those
γ’s in the context of relations between eMZVs at length `ω ≥ 6.
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Counting of indecomposable eMZVs. What are the advantages of translating eMZVs into
iterated Eisenstein integrals? We would like to derive the set of indecomposable eMZVs with
given length and weight from purely combinatorial considerations, similar to writing down all
non-commutative words of letters f for standard MZVs (cf. eq. (3.5)). In particular, each inde-
composable eMZV in table 1 should be related to a particular combination of shuffle-independent
γ’s. Correspondingly, the counting of indecomposable γ’s of appropriate weight and length
should be related to the numbers in table 2.

In order to assess the viability of iterated Eisenstein integrals γ for this purpose, it is worth-
while to recall the following observations:

(a) By construction, constant terms are absent in the differential eq. (2.47) for eMZVs. This
interlocks the first entries of iterated Eisenstein integrals representing eMZVs in rigid
combinations of γ(k, . . .) + 2ζk γ(0, . . .). Hence, it is sufficient for counting purposes to
focus on γ(k1, k2, . . . , kr) with k1 6= 0.

(b) The choice of indecomposable eMZVs in table 1 contains no further divergent representative
besides ω(0, 1) = γ(2)+2 ζ2 γ(0)+ iπ

2 . For any weight and length considered, divergences in
eMZVs are captured by products with γ(2) instead of shuffle-irreducible integrals of higher
length such as γ(2, 4). We will assume the continuation of this pattern and confine the
choice of labels for all other Eisenstein integrals γ at length `γ ≥ 2 to the set {0, 4, 6, . . .}.
This will be justified later on by the observation that the element ε2 ∈ u corresponding to
γ(2) is central by eq. (4.27).

(c) The shuffle relations eq. (4.4) allow to reduce various linear combinations of iterated Eisen-
stein integrals to lower length, e.g.

γ(4, 4) = 1
2 γ(4)2 and γ(6) γ(4) = γ(4, 6) + γ(6, 4) , (4.20)

and the bookkeeping of indecomposable eMZVs boils down to classifying shuffle-independent
Eisenstein integrals γ. At length `γ = 2 and weight wγ = 10, possible indecomposable
elements read γ(10, 0) and γ(6, 4), because γ(4, 6) can be obtained using shuffling of γ’s
of lower length. Similarly, `γ = 2 and wγ = 12 leaves no indecomposable eMZVs beyond
γ(12, 0) and γ(8, 4).

Let us compare the survey of available Eisenstein integrals with the indecomposable eMZVs in
table 1. Eisenstein integrals of length one immediately match with the maximal component of
indecomposable eMZVs ω(0, 2n+ 1) of length two using eq. (4.10a), so the first non-trivial tests
occur at length `ω = 3, i.e. `γ = 2.

Via eq. (4.10b) one finds indeed γ(4, 0), γ(6, 0) and γ(8, 0) to represent the maximal com-
ponent of ω(0, 0, 2), ω(0, 0, 4) and ω(0, 0, 6), respectively. For wγ = 10, which corresponds to
wω = 8, one can write down two distinct indecomposable elements: γ(10, 0) and γ(6, 4). This
nicely ties in with the appearance of the second indecomposable eMZV ω(0, 3, 5) at `ω = 3 and
wω = 8, see eqs. (4.18) and (4.19).

Similarly, the aforementioned indecomposable eMZVs γ(12, 0) and γ(8, 4) at weight wγ = 12
are in concordance with the wω = 10 entry of table 1,

ω(0, 0, 10) = −ζ10
3 − 110 γ(12, 0)− 220 ζ12 γ(0, 0)

ω(0, 3, 7) = −294 γ(8, 4)− 1848 γ(12, 0) + non-maximal terms . (4.21)
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The appearance of the indecomposable eMZVs ω(0, 3, 5) and ω(0, 3, 7) beyond ω(0, 0, 2n) matches
the existence of shuffle-independent Eisenstein integrals γ(6, 4) and γ(8, 4) in addition to γ(10, 0)
and γ(12, 0).

Surprises from weight-twelve eMZVs and beyond. The literal application of the above
reasoning to iterated Eisenstein integrals of weight wγ = 14 suggests indecomposable eMZVs

ω(0, 0, 12) from γ(14, 0), ω(0, 3, 9) from γ(10, 4) and ω(0, 5, 7) from γ(8, 6) . (4.22)

This, however, clashes with the findings noted in table 1: at `ω = 3 and wω = 12 we find only
two indecomposable eMZVs ω(0, 0, 12) and ω(0, 3, 9), whereas the above counting of appropri-
ate interated Eisenstein integrals would suggest three indecomposable eMZVs. In particular,
ω(0, 5, 7) can be expressed in terms of the two indecomposable eMZVs as written in eq. (2.35).

In order to explain the discrepancy between indecomposable eMZVs and shuffle-independent
iterated Eisenstein integrals, let us inspect the first instance at wγ = 14, `γ = 2, which corre-
sponds to wω = 12, `ω = 3. The natural candidates for indecomposable eMZVs besides ω(0, 0, 12)
have the following γ-representations,

ω(0, 3, 9) =− 315 γ(8, 6)− 729 γ(10, 4)− 5616 γ(14, 0) + non-maximal terms (4.23)
ω(0, 5, 7) =− 490 γ(8, 6)− 1134 γ(10, 4)− 5642 γ(14, 0) + non-maximal terms ,

and the relation eq. (2.35) for ω(0, 5, 7) leaves only ω(0, 0, 12) and ω(0, 3, 9) indecomposable.
In general, there seem to be non-obvious restrictions to the Eisenstein integrals γ appearing in
eMZVs, beyond the observations (a), (b) and (c). In table 4, we have noted the deviations from
the expected pattern at lengths `ω ≤ 5. Interestingly, the Eisenstein integrals γ(8, 6) and γ(10, 4)

`ω

wω 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2 1 1 1 1 1 1 1 1 1 1
3 1 1 1 2 2 32 3 43 43
4 1 1 2 3 4 65 87 108 1310 1612
5 1 2 4 6 109 1413 2117 2823 3930

Table 4: Number of indecomposable eMZVs at length ` according to the counting of γ(k1, k2, . . . , kn)
suggested by the above observations (a), (b) and (c). The black numbers denote the number of shuffle-
independent γ’s with ki = 0, 4, 6, . . . and k1 6= 0 while the red numbers indicate a deviating number of
indecomposable eMZVs found from reflection-, shuffle- and Fay relations or the q-expansion.

enter eq. (4.23) and thus any other eMZV of the same weight and length in the combination

35 γ(8, 6) + 81 γ(10, 4) (4.24)

exclusively. The above quantity is the first in a series of links to the derivation algebra u

introduced and discussed in the next subsection.

4.3 A relation to the derivation algebra u

The explanation of the deviating numbers for indecomposable eMZVs compared to shuffle-
independent Eisenstein integrals in the last subsection can be provided starting from the follow-

25

Appendix D. Relations between elliptic multiple zeta values and a special
derivation algebra

176



ing differential equation for the KZB associator A(q) defined in eq. (2.37) [1]:

d
dlog q (eiπ[y,x]A(q)) = 1

4π2

( ∞∑

n=0
(2n− 1) G2n(q)ε2n

)
(eiπ[y,x]A(q)) . (4.25)

The Eisenstein series G2n in eq. (4.25) are accompanied by derivations ε2n which act on the
non-commutative variables x and y in the expansion of A(q) via

ε2n(x) = (adx)2n(y) , n ≥ 0 (4.26a)
ε2n(y) = [y, (adx)2n−1(y)] +

∑

1≤j<n
(−1)j [(adx)j(y), (adx)2n−1−j(y)] , n > 0 (4.26b)

ε0(y) = 0 . (4.26c)

They generate a Lie subalgebra u of the algebra of all derivations on the free Lie algebra generated
by x, y [16, 22, 23]. The relations originating from eq. (4.26) have been studied extensively in
ref. [24]. Beyond

[ε2n, ε2] = 0 , n ≥ 0 , (4.27)

there are several non-obvious relations such as

0 = [ε10, ε4]− 3 [ε8, ε6] , (4.28a)
0 = 2 [ε14, ε4]− 7 [ε12, ε6] + 11 [ε10, ε8] , (4.28b)
0 = 80 [ε12, [ε4, ε0]] + 16 [ε4, [ε12, ε0]]− 250 [ε10, [ε6, ε0]]
− 125 [ε6, [ε10, ε0]] + 280 [ε8, [ε8, ε0]]− 462 [ε4, [ε4, ε8]]− 1725 [ε6, [ε6, ε4]] . (4.28c)

The rôle of ε2 as a central element in eq. (4.27) is reminiscent of the above observation (b): any
appearance of the non-modular G2 can be captured by powers of γ(2). Moreover, a peculiar
linear combination of γ(8, 6) and γ(10, 4) has been observed in eq. (4.24) to appear in all eMZVs
at `ω = 3 and wω = 12. Upon identifying labels in γ with those of derivations ε2n as suggested
by eq. (4.25), one could attribute the selection rule on γ(8, 6) and γ(10, 4) to eq. (4.28a).

This connection will be made more precise in the subsequent. For this purpose, iterated
Eisenstein integrals will be rewritten in terms of non-commutative letters similar to the ones
discussed for usual MZVs in section 3. In particular we are led to an structure reminiscent of
the φ-map, which provided the key to a convenient representation of MZVs in which all known
relations over Q are automatically built in.

The rewriting of the ω-representation of eMZVs in terms of non-commutative letters turns
out to mimick the procedure used in order to define the map φ in eq. (3.6). Despite the
resemblance, however, the definition of the map φ depends on the choice of an algebra basis for
motivic MZVs, while the rewriting of eMZVs in terms of non-commutative letters to be described
below is completely canonical.

Eisenstein integrals as non-commutative words. As a first step to make the connection
between eMZVs and the algebra of derivations manifest, let us translate iterated Eisenstein
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integrals into words composed from non-commutative generators g0, g2, g4, . . .6,

ψ
[
γ(k1, k2, . . . , kn)

] ≡ gkngkn−1 . . . gk2gk1∏n
j=1(kj − 1) . (4.29)

Here, we need to assume that the iterated Eisenstein integrals are linearly independent, and
the normalization gk/(k−1) of the non-commutative alphabet is suggested by the combinations
(k − 1) Gk in eq. (4.25) and the factors of ni Gni+1 in eq. (4.10a).

The non-commutative letters gk are naturally endowed with a shuffle product. The ψ-map
defined by eq. (4.29) then satisfies

ψ
[
γ(n1, n2, . . . , nr)γ(k1, k2, . . . , ks)

]
= ψ

[
γ(n1, n2, . . . , nr)

]
ψ
[
γ(k1, k2, . . . , ks)

]
. (4.30)

The linear combination of γ(8, 6) and γ(10, 4) appearing in the eMZVs with wω = 12 and `ω = 3
are mapped to

ψ
[
35 γ(8, 6) + 81 γ(10, 4)

]
= g6g8 + 3g4g10 . (4.31)

Hence, the image of any wω = 12, `ω = 3 eMZV under eq. (4.29) is annihilated by the differential
operator

[∂10, ∂4]− 3[∂8, ∂6] , (4.32)

once differentiation of a non-commutative word in gi is defined to act on the leftmost letter

∂jgk1 . . . gkn = δj,k1gk2 . . . gkn . (4.33)

This differentiation rule satisfies a Leibniz property w.r.t. the shuffle product eq. (4.30) and ap-
peared already in the context of the representation of motivic MZVs in terms of non-commutative
letters fi [11], see the discussion in section 3. Note furthermore that the recursive construction of
the eMZVs’ ψ-image via eq. (4.9) with coefficients ξ2k(n1, . . . , nr) determined by the differential
equation (2.47) is similar to the recursive evaluation of the φ-map [11]: The coefficients ξ2k+1
of φ(ζm) = ∑

3≤2k+1≤w f2k+1ξ2k+1 for some motivic MZV of weight w are determined by the
component of weight (2k+ 1)⊗ (w−2k−1) in the coaction. Hence, the τ -derivative in the form
eq. (4.9) exhibits a formal similarity to the coaction of motivic MZVs.

However, there is an important difference between the φ-map and the rewriting of eMZVs
in its ψ-image: while the φ-map depends on a choice of algebra generators (for example the
adaptation of eq. (3.10) to the basis in table 3), the ψ-map for eMZVs is completely canonical.

In summary, the ψ-image of an eMZV ω(n1, . . . , nr) is computed in two steps:

• use the differential equation to write ω(n1, . . . , nr) as a linear combination of iterated Eisen-
stein integrals γ(k1, . . . , ks). Relying on our working hypothesis that iterated Eisenstein
integrals are linearly independent, this decomposition is unique.

• apply the map in eq. (4.29) to each of the γ’s.

Non-commutative differentiation and the derivation algebra u. The similarity between
eqs. (4.28a) and (4.32) suggests to identify derivations ε2m with derivatives with respect to the
non-commutative letters ∂2m. Indeed, we will verify in three steps that the derivations ε2m

6We are grateful to Francis Brown who helped us to understand the language and scope of non-commutative
words in the context of multiple modular values, in particular for pointing us to section 12 of ref. [18].
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encode the action of ∂2m on the ψ-image of the KZB associator eq. (2.37) and therefore on the
ψ-image of any eMZVs:

(i) integrate the differential equation (4.25) of the KZB associator,

eiπ[y,x](A(q)−A(0)) = eiπ[y,x] 1
4π2

∞∑

n=0
(2n− 1)

∫ q

0
dlog q′ G2n(q′)ε2nA(q′) , (4.34)

using the corollary ε2n([y, x]) = 0 of eq. (4.26) to commute ε2neiπ[y,x] = eiπ[y,x]ε2n

(ii) apply the ψ-map defined in eq. (4.29):

ψ
[
A(q)−A(0)

]
=
∞∑

n=0
ε2ng2nψ

[
A(q)

]
, (4.35)

using the fact that integration against (2n−1)
4π2 G2n amounts to left-concatenation with g2n

(iii) act with ∂2m such that the sum over n collapses by eq. (4.33),

∂2mψ
[
A(q)−A(0)

]
= ∂2mψ

[
A(q)

]
= ∂2m

∞∑

n=0
ε2ng2nψ

[
A(q)

]
= ε2mψ

[
A(q)

]
, (4.36)

where we used that the derivative ∂2m annihilates the boundary term A(0), which trans-
lates into an empty word in the letters g.

This is the reason, why any relation among the derivations εi defines a differential operator via
εi → ∂i which annihilates the ψ-image of any eMZV. Explicitly:

∀ E ∈ u such that E(x) = E(y) = 0 ⇒ E
∣∣
ε2m→∂2m

ψ
[
ω(n1, . . . , nr)

]
= 0 . (4.37)

Thus, any relation in u obstructs the appearance of some single linear combination of iter-
ated Eisenstein integrals eq. (4.2) among eMZVs and reduces the counting of indecomposable
representatives at lengths and weights governed by the conversion rules eq. (4.17a).

4.4 Systematics of relations in the derivation algebra

Naturally, we have been checking the implications of counting shuffle-independent γ(k1, k2, . . . , kn)
subject to k1 6= 0 and ki 6= 2 (cf. the three observations around eq. (4.20)) and the connection
with the derivation algebra u established in the previous subsection by comparing q-expansions:
up to weights wω = 30, 18, 8, 5 for `ω = 3, 4, 5, 6 we find complete agreement. There are, how-
ever, no obstructions for repeating the analysis for eMZVs of higher length, as tested for several
low weights at length 7 and 8.

Counting relations from the algebra of derivations u for a given weight and depth works as
follows: we start with an ansatz for a relation E of the form

0 !=
∑

{n1,n2,...,nr}
αn1,n2,...,nr [[. . . [[∂n1 , ∂n2 ], ∂n3 ], . . .], ∂nr ] (4.38)

with rational fudge coefficients αn1,n2,...,nr and {n1, n2, . . . , nr} composed of ni = 0, 4, 6, . . . of
appropriate weight and length. The number r of partial derivatives in the nested commutators
of eq. (4.38) (or the number of εn in the dual derivations, respectively) is referred to as depth. Of
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course, the summation in eq. (4.38) is restricted to nested commutators which are independent
under Jacobi identities.

Considering eq. (4.37), the above ansatz for E should annihilate all ψ-images of eMZVs of
the length and weight considered. Using a sufficiently large set of eMZVs, one can easily fix all
fudge coefficients in the ansatz and thus extract relations.

Using this method, we find perfect agreement of eq. (4.38) as an operator equation acting
on eMZVs with the relations in the derivation algebra available in refs. [24, 40, 41]. In the
following paragraphs we will review their classification and extend the explicit results to higher
commutator-depths.

Special rôle of ε2. As already observed above, none of the indecomposable eMZVs besides
ω(0, 1) does contain an Eisenstein integral involving G2. This reflects the rôle of ε2 as a central
element, as noted in eq. (4.27). Hence, it is sufficient to study commutator relations without ε2.

Irreducible versus reducible relations. Any relation in the derivation algebra u 3 E = 0
of the form eq. (4.38) yields an infinity of higher-depth corollaries by repeated adjoint action
of εn:

E = 0 ⇒ adn1,n2,...,nk(E) ≡ [εn1 , [εn2 , [. . . , [εnk , E] . . .]]] = 0 . (4.39)

Any instance of eq. (4.39) with k > 0 and E denoting a vanishing combination of εn-commutators
is called a reducible relation, whereas relations that cannot be cast into the form adn1,n2,...,nk(E) =
0 are referred to as irreducible. For instance, the simplest non-obvious relation eq. (4.28a) is
irreducible and gives rise to reducible relations such as

[
εn, [ε10, ε4]− 3[ε8, ε6]

]
= 0 , (4.40)

and generalizations to higher depth. They affect the bookkeeping of irreducible eMZVs starting
from wγ = 14 and `γ = 3, which corresponds to wω = 11 and `ω = 4.

A correspondence between cusp forms of weight w and irreducible relations at depth d and
weight w+2(d−1) has been discussed in ref. [24]. In the same way as the number of cusp forms
at modular weight w is given by

χw ≡
{
b w12c − 1 : w = 2 mod 12
b w12c : other even values of w , (4.41)

we expect χw−2(d−1) irreducible relations at weight w and depth d relevant to eMZVs of non-
negative weight wω (see eq. (4.16) for its relation to the weight of the iterated Eisenstein integral).
In table 5, this conjectural counting is exemplified up to wγ = 30 with a notation rdwγ for such
irreducible relations. Relations of depth two can be cast into a closed formula [26]

0 =
2n+2p−1∑

i=1

[ε2p+2n−i+1, εi+1]
(2p+ 2n− i− 1)!

{(2n− 1)!Bi−2p+1
(i− 2p+ 1)! + (2p− 1)!Bi−2n+1

(i− 2n+ 1)!
}
, (4.42)

where p, n ≥ 1 denote arbitrary integers and Bn are Bernoulli numbers. Each term of eq. (4.42)
carries weight 2(p+ n+ 1), e.g. the weight-14 relation eq. (4.28a) follows from any partition of
p+ n = 6, and the weight-18 relation eq. (4.28b) from any partition of p+ n = 8.

Irreducible relations at higher depth can be obtained in electronic form from the website
https://tools.aei.mpg.de/emzv, whereas relations of depth three at w = 16, 20 and depth
four at w = 18, 22 are provided in ref. [24]. New relations beyond those in said reference are
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wγ

`γ 2 3 4 5 6 7 8 9 10

12 0 0 0 0 0 0 0 0 0
14 r2

14 0 0 0 0 0 0 0 0
16 0 r3

16 0 0 0 0 0 0 0
18 r2

18 0 r4
18 0 0 0 0 0 0

20 r2
20 r3

20 0 r5
20 0 0 0 0 0

22 r2
22 r3

22 r4
22 0 r6

22 0 0 0 0
24 r2

24 r3
24 r4

24 r5
24 0 r7

24 0 0 0
26 2× r2

26 r3
26 r4

26 r5
26 r6

26 0 r8
26 0 0

28 r2
28 2× r3

28 r4
28 r5

28 r6
28 r7

28 0 r9
28 0

30 2× r2
30 r3

30 2× r4
30 r5

30 r6
30 r7

30 r8
30 0 r10

30

Table 5: Irreducible relations r`w. Up to weight 30 there are no more than two relations at a particular
weight and length, which will, however, change proceeding to higher weight and length. An actual list of
the first irreducible relations is available in appendix C.1.

obtained from the differential operators eq. (4.38) annihilating all eMZVs of corresponding weight
and length. This approach to finding relations in the derivation algebra appears computationally
more efficient to us than evaluating the action of elements of the derivation algebra on generators
x and y of the free Lie algebra. However, once a candidate relation has been identified, it is
straightforward to check its validity using its action on the letters x and y via eq. (4.26).

Vanishing nested commutators. Starting from wγ = 8 and `γ = 5, we find that the ψ-image
of any eMZV with appropriate weight and length is annihilated by operators of the form

[[[[∂4, ∂0], ∂0], ∂0], ∂2m] . (4.43)

The reason becomes clear by considering γ(4, 0, 0, 0), one of the corresponding Eisenstein inte-
grals. By eq. (4.16), related eMZVs are bound to have `ω = 5 and wω = 0, but the only eMZV
with these properties is ω(0, 0, 0, 0, 0) = 1/120 which cannot equal the non-constant γ(4, 0, 0, 0).
Hence, the latter does not occur among eMZVs and signals the irreducible relation

[[[ε4, ε0], ε0], ε0] = 0 , (4.44)

which in turn implies that [[[∂4, ∂0], ∂0], ∂0] annihilates the KZB associator by eq. (4.36). The
relation eq. (4.44) can be understood from the organization of u in terms of representations of
the Lie algebra sl2: considering ε2m as the lowest-weight state in a (2m−1)-dimensional module,
the highest-weight vector ad2m−2

0 ε2m is annihilated by further adjoint action of ε0.
Further irreducible relations of this type include

adp−1
0 εp = [ε0, . . . [ε0, [ε0,︸ ︷︷ ︸

p−1 times

εp]] . . .] = 0 , p = 4, 6, 8, . . . , (4.45)

corresponding to the Eisenstein integral γ(p, 0p−1) with would-be eMZV partners of vanishing
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wω. Different partitions of the weight in eq. (4.45) lead to further relations such as

[[[[[[[ε4, ε0], ε4], ε0], ε0], ε0], ε0], ε0] = 0 , [[[[[[[[[ε4, ε0], ε6], ε0], ε0], ε0], ε0], ε0], ε0], ε0] = 0 . (4.46)

Since all their permutations via ε4 ↔ ε0 or ε6 ↔ ε0 can be identified as a reducible relation
descending from eq. (4.45), we expect no further irreducible relations at d = wγ = 8 or 10
besides eq. (4.46).

Additional generators of the Lie algebra Consider the free Lie algebra k = L(z3, z5, z7, . . .)
generated by one element in every odd degree strictly greater than one. As mentioned on page
6 of ref. [24], every generator z2k+1 of k defines a derivation z̃2k+1 of depth 2k + 1 and weight
4k+ 2 of the free Lie algebra on two generators x, y, and satisfies [z̃2k+1, u] ⊂ u. More precisely,
the elements ε0, ε2 are annihilated by the elements z̃2k+1

0 = [z̃2k+1, ε0] = [z̃2k+1, ε2] , k = 1, 2, 3, . . . , (4.47)

and their commutators with ε4, ε6, . . . can be constructed using the techniques of [24], e.g.

[z̃3, ε4] = − 1
14[[ε4, ε0], [ε6, ε0]] + 1

42[ε4, [ε0, [ε0, ε6]]]− 1
7[ε6, [ε0, [ε0, ε4]]] . (4.48)

They give rise to further reducible relations, starting from length five at weights 20, 24, 26, . . .
by the commutator of z̃3 with the depth-two relations in eq. (4.28) or eq. (4.42).

4.5 Counting relations between nested commutators

Example. In order to demonstrate the virtue of the derivation algebra as a counting formal-
ism for indecomposable eMZVs, let us consider wγ = 20, `γ = 5 as a specific example, which
corresponds to wω = 15, `ω = 6. This is the first situation, where all four types of relations
described in the previous section have to be taken into account in order to arrive at what we
believe is the correct counting of eMZVs.

The näıve enumeration of shuffle-independent γ’s with k1 6= 0 and ki 6= 2 leads to 55 distinct
elements. Each relation of depth 5 and weight 20 in the derivation algebra will lower this number
according to eq. (4.37).

Let us first consider reducible relations. Starting from table 5, one can construct the following
reducible relations by adjoint action of εn (recalling the notation rdwγ for irreducible relations of
depth d and weight wγ as well as adn1,n2,...,nkr

j
i ≡ [εn1 , [εn2 , [. . . , [εnk , rdwγ ] . . .]]]):

ad6,0,0 r2
14 ↔ 3 permutations , ad0,0,0 r2

20 ↔ 1 permutation
ad4,0 r3

16 ↔ 2 permutations , ad0,0 r3
20 ↔ 1 permutation . (4.49)

In addition, there is one relation each descending from the vanishing nested commutator eq. (4.44)
and the additional Lie algebra generator z̃3,

[[[[ε4, ε0], ε0], ε0], ε16] = 0 and [z̃3, r
2
14] = 0 , (4.50)

which makes a total of 9 reducible relations.
Indeed, starting with an ansatz of the form eq. (4.38), we find ten distinct relations: while

eqs. (4.49) and (4.50) are confirmed, our method explicitly delivers the new irreducible relation
r5

20 expected from table 5. To our knowledge this is the first appearance of an explicit relation
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at depth 5 in u, which is written out in appendix C.5. Correspondingly, we find the number of
indecomposable eMZVs at (`γ , wγ) = (5, 20) (or (`ω, wω) = (6, 15)) to be 45.

General. In order to repeat the counting procedure from the above example for a variety
of weights and lengths, the following tables give an overview of the required ingredients: The
numbers of shuffle-independent iterated Eisenstein integrals compatible with observations (a)
and (b) in subsection 4.2 are gathered in table 6 and have to be compared with the counting of
relations in u seen in table 7. Once the offset between (wγ , `γ) and (wω, `ω) in eq. (4.17a) is

`γ

wγ 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 0 0 1 1 1 2 2 3 3 4 4 5 5 6 6 7
3 0 0 1 1 2 3 4 6 8 10 13 16 19 23 27 31
4 0 0 1 1 2 4 6 10 14 21 28 39 50 66 82 104
5 0 0 1 1 3 5 9 15 24 37 55 80 113 156 211 280
6 0 0 1 1 3 6 11 21 35 59 93 146 217 322 459 649
7 0 0 1 1 4 7 15 28 51 89 150 245 389 602 910 1347

Table 6: Shuffle-independent γ(k1, . . . , kn) subject to k1 6= 0 and ki 6= 2 at various weights wγ and
lengths `γ .

d
wγ 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

2 0 0 0 0 0 0 1 0 1 1 1 1 2 1 2 2 2 2 3 2
3 0 0 0 0 0 0 1 1 2 3 4 5 7 8 10 12 14 16 19 21
4 0 1 0 0 0 0 1 1 4 5 9 13 19 ? ? ? ? ? ? ?
5 0 1 0 1 1 1 2 2 6 10 ? ? ? ? ? ? ? ? ? ?
6 0 1 1 2 2 3 5 6 11 ? ? ? ? ? ? ? ? ? ? ?

Table 7: Relations in the derivation algebra at various weights wγ and depths d, excluding the central
element ε2.

taken into account, one arrives at the numbers of indecomposable eMZVs in the ω-representation
noted in table 8.

From the above data, one readily arrives at all-weight statements on the number of inde-
composable eMZVs of length `ω ≤ 4:

• At length `ω = 2, there is obviously one indecomposable eMZV at each odd weight wω.

• At length `ω = 3, the number of indecomposable eMZVs at even weight wω is d1
6wωe. This

follows from comparing the number
⌈wω

4
⌉− 1 of admissible γ(k1, k2) (k1 > k2, ki 6= 2) at

weight wω > 4 with the counting of depth-two relations in u governed by eq. (4.41).

• At length `ω = 4, the number of indecomposable eMZVs at odd weight wω is conjectured
to be b1

2 + 1
48(wω + 5)2c. This conjecture stems from extrapolating [42] the data available

at wω ≤ 37. The extrapolation will remain valid, if the counting of irreducible r3
w keeps

on following the cusp forms.
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`ω

wω 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

2 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 2 2 2 3 3 3 4 4
4 1 1 2 3 4 5 7 8 10 12 14 16
5 1 2 4 6 9 13 17 23 30 37 47
6 1 2 4 8 13 22 31 45 ? ? ? ?
7 1 4 8 16 29 48 ? ? ? ? ?

Table 8: Numbers N(`ω, wω) of indecomposable eMZVs in their ω-representation. This is an extended
version of table 2, where the black results are obtained by explicitly determining q-expansions while
results printed in blue originate from testing relations between nested commutators as described around
eq. (4.38).

Starting from the next length, `ω = 5 or `γ = 4, an effect well-known from the algebra of MZVs
kicks in: because the lowest non-trivial relation from the derivation algebra u exists at weight
14 depth 2, there is the possibility to obtain the “relation of a relation” adr2

14
(r2

14) = 0 at weight
28, depth 4. This effect, which appears in iterated form for higher depth, as well as the action
of the generators of the free Lie algebra k described in subsection 4.4 render the counting at
higher depth difficult. Correspondingly, a closed formula, e.g. a generating series for the number
of indecomposable eMZVs at given length and weight is still lacking and some of the entries in
table 7 are left undetermined.

4.6 A simpler representation of the eMZV subspace

From the discussion in the previous subsections it became clear that eMZVs can be nicely
represented in terms of iterated Eisenstein integrals eq. (4.2). While those integrals have to be
regularized individually as pointed out in the context of eq. (4.7), the representation of eMZVs
cannot involve any divergences upon integrating their τ -derivative eq. (2.47). In this section
we would like to manifest this property and define a modified version of iterated Eisenstein
integrals γ0, which are individually convergent by construction. By using the γ0-language, one
will trade some of the connections to periods and motives [18] inherent in the γ-language for
compactness of representation. A further advantage of the γ0-language to be introduced is a
better accessibility of the q-expansions of eMZVs.

Modified iterated Eisenstein integrals. Already in subsection 4.2 it was remarked that
the τ -derivative of eMZVs determined by the differential equation (2.47) cannot contain any
constant terms. Therefore, it is an obvious idea to subtract the constants from the non-trivial
Eisenstein series before defining their iterated integrals:

G0
0 ≡ −1

G0
k ≡ Gk−2 ζk = 2(−1)k/2(2π)k

(k − 1)!

∞∑

m,n=1
mk−1qmn , k even, k 6= 0 . (4.51)

Using this definition, one can rewrite eqs. (4.8a) and (4.8b) as

d
dlog q ω(0, n) = n

4π2 G0
n+1, n odd (4.52a)
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d
dlog q ω(0, 0, n) = n

4π2 ω(0, n+ 1) G0
0, n even , (4.52b)

and the differential equation (2.47) for generic eMZVs can be easily cast into the form

d
dlog q ω(n1, n2, . . . , nr) = 1

4π2

∞∑

k=0
ρ2k(n1, n2, . . . , nr) G0

2k . (4.53)

In complete analogy to eq. (4.9), the coefficients ρ2k(n1, . . . , nr) are linear combinations of eMZVs
with weight n1 + . . . + nr + 1 − 2k and length r − 1, the only difference being that Eisenstein
series in eq. (2.47) are now expanded via Gk = G0

k−2 ζk G0
0 whenever k 6= 0.

From the form eq. (4.53) of the differential eq. (2.47), it is straightforward to introduce
modified iterated Eisenstein integrals γ0 via

γ0(k1, k2, . . . , kn; q) ≡ 1
4π2

∫

0≤q′≤q
dlog q′ γ0(k1, . . . , kn−1; q′) G0

kn(q′) , k1 6= 0

= 1
(4π2)n

∫

0≤qi<qi+1≤q
dlog q1 G0

k1(q1) dlog q2 G0
k2(q2) . . . dlog qn G0

kn(qn) , (4.54)

whose definition as an iterated integral implies

d
dlog q γ0(k1, k2, . . . , kn; q) =

G0
kn(q)
4π2 γ0(k1, k2, . . . , kn−1; q) (4.55)

γ0(n1, n2, . . . , nr; q) γ0(k1, k2, . . . , ks; q) = γ0
(
(n1, n2, . . . , nr) (k1, k2, . . . , ks); q

)
. (4.56)

The notion of weight and length are not altered w.r.t. the definition for γ. Naturally, γ0’s suffer
from the same caveat with respect to linear independence as their cousins γ. There are several
advantages of employing this modified class of iterated Eisenstein integrals γ0 for the description
of eMZVs:

• Logarithmic divergences for q → 0 as present in eq. (4.2) do not occur after setting k1 6= 0.
Modified iterated Eisenstein integrals γ0 are perfectly well-defined objects which do not
require regularization.

• The number of terms necessary to express eMZVs as combinations of iterated Eisenstein
integrals γ0 is significantly lower than for γ.

• The absence of constant terms in the expansion of G0
k1 propagates to any convergent

iterated Eisenstein integral,
γ0(k1, k2, . . . , kn; 0) = 0 . (4.57)

Note that we will again suppress the dependence on q in most cases: γ0(. . .) ≡ γ0(. . . ; q) .

Examples. Let us return to the examples eqs. (4.52a) and (4.52b). The differential equation
(4.55) immediately implies

ω(0, n) = δ1,n
πi

2 + nγ0(n+ 1), n odd (4.58a)

ω(0, 0, n) = −1
3 ζn−n(n+ 1) γ0(n+ 2, 0), n even , (4.58b)

where δ1,n
πi
2 and −1

3 ζn arise as integration constants w.r.t. log q. Indeed, these expressions are
convergent by definition and shorter than their counterparts in eqs. (4.10a) and (4.10b).
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For illustrational purposes let us also revisit the example ω(0, 3, 5). Its derivative

4π2 d
dlog q ω(0, 3, 5) = 30 ζ6 ω(0, 3)− 15(G0

4−2 ζ4 G0
0)ω(0, 5) + 45ω(0, 9) (4.59)

amounts to ρ4(0, 3, 5) = −15ω(0, 5) and ρ0(0, 3, 5) = 30 ζ4 ω(0, 5) − 45ω(0, 9) − 30 ζ6 ω(0, 3) in
the notation of eq. (4.9) and can be translated to modified Eisenstein integrals via eq. (4.58a):

4π2 d
dlog q ω(0, 3, 5) = 90 ζ6 γ0(4)− 75 (G0

4−2 ζ4 G0
0) γ0(6) + 405 γ0(10) (4.60)

Integration using eq. (4.54) yields the following alternative representation to eq. (4.15),

ω(0, 3, 5) = −90 ζ6 γ0(4, 0) + 150 ζ4 γ0(6, 0)− 75 γ0(6, 4)− 405 γ0(10, 0) . (4.61)

Further examples of eMZVs expressed in the language of modified iterated Eisenstein integrals
can be found in appendix B.

q-expansion. In contrast to the γ-language used in the last section, there is no caveat on
regularization when performing the integrals over qj in the definition eq. (4.54) of γ0. The q-
expansion stems from the expression for Eisenstein series in eq. (4.51) and can be cast into a
closed form (with 0n denoting a sequence of n entries 0, 0, . . . , 0):

γ0(k1, 0p1−1, k2, 0p2−1, . . . , kr, 0pr−1) =
r∏

j=1

(
− 2(2πi)kj−2pj

(kj − 1)!
)

(4.62)

×
∞∑

mi,ni=1

mk1−1
1 mk2−1

2 . . .mkr−1
r qm1n1+m2n2+...+mrnr

(m1n1)p1(m1n1 +m2n2)p2 . . . (m1n1 +m2n2 + . . .+mrnr)pr
.

An even more compact representation can be achieved using the divisor sum

σk(n) ≡
∑

d|n
dk , (4.63)

which allows to rewrite eq. (4.62) as

γ0(k1, 0p1−1, k2, 0p2−1, . . . , kr, 0pr−1) =
r∏

j=1

(
− 2(2πi)kj−2pj

(kj − 1)!
)

(4.64)

×
∑

0<n1<n2<···<nr

σk1−1(n1)σk2−1(n2 − n1) . . . σkr−1(nr − nr−1)qnr
np1

1 n
p2
2 . . . nprr

.

The above expression bears some resemblance to the sum representation eq. (2.1) of MZVs.
One could wonder if rearrangements of the sums could yield a genus-one analogue of stuffle
relations. However, both the appearance of the divisor sums and the q-dependence prevent
such manipulations. In fact, we did not observe a single relation among iterated Eisenstein
integrals γ0 beyond the shuffle relations eq. (4.4) up to weights 44, 31, 22, 19 for length 2, 3, 4, 5,
respectively.

Given the above γ0-representation of the simplest eMZVs, we arrive at two closed forms for
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q-expansions

ω(0, k) = δk,1
iπ

2 + 2(−1)(k+1)/2(2π)k−1

(k − 1)!

∞∑

m,n=1

mk−1

n
qmn , k odd (4.65)

ω(0, 0, k) = −1
3ζk + 2(−1)(k+2)/2(2π)k−2

(k − 1)!

∞∑

m,n=1

mk−1

n2 qmn , k even , (4.66)

while further expressions for interesting ω(0, 0, . . . , 0, k) at higher length are given in appendix B.1.

Connection with the derivation algebra. A manifestly convergent description of eMZVs
in terms of modified iterated Eisenstein integrals γ0 comes with a price at the end of the day:
the constant terms which have been omitted in the definition (4.54) have to be restored in order
to establish a connection with the derivation algebra. In particular, the translation of modified
iterated Eisenstein integrals into the language of non-commutative words built from letters gk
described in subsection 4.3 involves various shifts ∼ ζk g0,

ψ
[
γ0(k1, 0p1 , k2, 0p2 , . . . , kn, 0pn)

]
= (−1)p1+p2+...+pn (4.67)

× (g0)pn
( gkn
kn − 1 − 2 ζkn g0

)
· · · (g0)p2

( gk2

k2 − 1 − 2 ζk2 g0
)
(g0)p1

( gk1

k1 − 1 − 2 ζk1 g0
)
,

where (g0)n refers to n adjacent letters g0. Furthermore, the concatenation of words is under-
stood to act linearly, e.g. g2(ζ4 g0 + g4)g8 = ζ4 g2g0g8 + g2g4g8. Nevertheless, the counting of
indecomposable eMZVs remains unmodified when projecting to the maximal component of their
γ-representation, see the discussion below eq. (4.17a).

5 Conclusions

In this work we have been studying the systematics of relations between eMZVs. Our results
support the conjecture that the entirety of relations can be traced back to reflection, shuffle and
Fay identities.

The numbers N(`ω, wω) of indecomposable eMZVs at any weight and length can be explained
once their connection to a special derivation algebra is taken into account: Any eMZV can
be expressed in terms of iterated integrals over Eisenstein series whose appearance in turn is
governed by the derivation algebra.

Our results for the numbers N(`ω, wω) of indecomposable eMZVs for various weights wω and
lengths `ω are listed in table 8. In addition, there are all-weight formulæ available for `ω ≤ 4
and odd values of wω + `ω,

N(2, wω) = 1 , N(3, wω) =
⌈1

6wω
⌉
, N(4, wω) =

⌊1
2 + 1

48(wω + 5)2
⌋
, (5.1)

where the expression for N(4, wω) is conjectural. Because of the diversity of constraints origi-
nating from the derivation algebra as described in section 4, a closed formula for all weights and
lengths is challenging to find and not yet available. A closely related issue is the computation
of the dimensions of the Lie algebra u, which has been carried out by Brown for depths 1, 2 and
3 [43].

Explicit q-expansions for eMZVs are accessible using a slightly modified version of iterated
Eisenstein integrals described in subsection 4.6. The resulting closed expression can be found in
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eq. (4.64).
The improved understanding of eMZVs raises a variety of follow-up questions, starting with

a connection of the underlying elliptic iterated integrals with recent results on Feynman integrals
[6–9]. In particular, the techniques which led to the q-expansions of eMZVs furnish a convenient
starting point to connect with the functions ELi introduced in ref. [7] and generalized in ref. [9].

The appearance of eMZVs in one-loop scattering amplitudes of the open superstring [5]
suggested a systematic study of indecomposable eMZVs. The results of the current article
should pave the way towards a compact form of string corrections at higher orders in α′ and
might even lead to a glimpse of an all-order pattern. The existence of such a description is
not unlikely: for open-string tree-level amplitudes a recursive formula based on the Drinfeld
associator is known. It was found by extending an initial observation in ref. [44] into a recursive
computation of the complete α′-expansions in ref. [45]. Similarly, the α′-expansion at one-loop
might be accessible by using the elliptic associators discussed in ref. [16].

The α′-expansion of the closed-string four-point amplitude at genus one has been investigated
in refs. [46–48], see [49, 50] for generalizations to five external states. The functions appearing
in those amplitudes include non-holomorphic Eisenstein series and a variety of their generaliza-
tions which have been analyzed in ref. [48]. It would be interesting to establish a connection
between these non-holomorphic functions and modular-invariant combinations of eMZVs and
their counterpart originating from the other homology cycle.
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Appendix

A eMZV relations

A.1 Decomposition of boring eMZVs

By eq. (2.17), all the above examples of shuffle-reductions of boring eMZVs can be identified as
special cases of the following general identity

ω(B)
∣∣∣
boring

=
∞∑

k=1
D2k

∑

B=A1A2...A2k
ω(Ai) interesting

ω(A1)ω(A2) . . . ω(A2k) , (A.1)

whose rational coefficients D2 = 1
2 , D4 = −1

8 , . . . are given by

D2k = (−1)k−1 (2k − 3)!!
k! 2k . (A.2)

The arguments B ≡ n1, n2, . . . , nr of the boring eMZVs on the left-hand side are deconcate-
nated7 into smaller tuples Aj = aj1, a

j
2, . . . , a

j
mj such that all eMZVs ω(Aj) are interesting. Only

even numbers of interesting ω(Aj) are compatible with the boring nature of ω(B), and the
concatenation AjAj+1 in eq. (A.1) is defined to yield aj1, . . . , a

j
mj , a

j+1
1 , . . . , aj+1

mj+1 .
Note that the first appearance of D4 = −1

8 can be seen from the second case ω(n1, n2, n3, n4)
in eq. (2.20). The vanishing of eMZVs with all entries odd (cf. eq. (2.21)) follows from the
absence of deconcatenations into tuples Aj with ω(Aj) interesting.

In order to prove8 eqs. (A.1) and (A.2), we recall that the antipode

S(n1, n2, . . . , nr) ≡ (−1)r(nr, . . . , n2, n1) (A.3)

in the shuffle algebra of words B = n1, n2, . . . , nr satisfies the following defining property [51]

B + S(B) +
∑

B=A1A2
A1,A2 6=∅

A1 S(A2) = 0 , B 6= ∅ . (A.4)

Since boring and interesting eMZVs can be neatly characterized through the antipode eq. (A.3),

ω(S(B)) =
{

ω(B) : ω(B) boring
−ω(B) : ω(B) interesting , (A.5)

applying ω(·) to (A.4) with boring ω(B) yields

ω(B)
∣∣∣
boring

= 1
2

{ ∑

B=A1A2
ω(Ai) interesting

ω(A1)ω(A2)−
∑

B=B1B2
ω(Bi) boring

ω(B1)ω(B2)
}
. (A.6)

This formula can be recursively applied to the boring factors ω(Bi) on the right-hand side until
only interesting contributions remain, leading to the structure of eq. (A.1). The coefficients D2k

7For example, the k = 1 part of eq. (A.1) encompasses those deconcatenations B = A1A2 into A1 =
n1, n2, . . . , nj and A2 = nj+1, . . . , nr where ω(n1, n2, . . . , nj) and ω(nj+1, . . . , nr) are interesting eMZVs.

8We are grateful to an anonymous referee for suggesting the proof.
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in eq. (A.2) are determined by the combinatorics of iterating eq. (A.6), e.g.

ω(B)
∣∣∣
boring

= 1
2

∑

B=A1A2
ω(Ai) interesting

ω(A1)ω(A2)− 1
8

∑

B=B1B2
ω(Bi) boring

{ ∑

B1=A1A2
ω(Ai) interesting

ω(A1)ω(A2)−
∑

B1=B3B4
ω(Bi) boring

ω(B3)ω(B4)
}

×
{ ∑

B2=A3A4
ω(Ai) interesting

ω(A3)ω(A4)−
∑

B2=B5B6
ω(Bi) boring

ω(B5)ω(B6)
}

(A.7)

reproduces the first two terms with k ≤ 2 in eq. (A.1). In the next iteration step towards
k = 3, either the first boring pair ω(B3)ω(B4) or the second one ω(B5)ω(B6) can be rear-
ranged via eq. (A.6). Since both of them contribute 1

32
∑
B=A1...A6 ω(A1) . . . ω(A6) with ω(Ai)

interesting, the above coefficient D6 = 1
16 rests on the two subdivisions of the schematic form

{(A1A2)(A3A4)}(A5A6) or (A1A2){(A3A4)(A5A6)}, referring to the application of eq. (A.6) to
either ω(B3)ω(B4) or ω(B5)ω(B6), respectively.

The contributions of ∑B=A1...A2k from the iteration of eq. (A.6) can be organized in terms of
full binary trees with k−1 internal vertices and k leaves. Internal vertices represent the expansion
of pairs of boring eMZVs via eq. (A.6) and at each of the k leaves, a pair of interesting eMZVs
is kept. Hence, the coefficient of ∑B=A1...A2k ω(A1) . . . ω(A2k) in eq. (A.1) is given by

D2k = 1
2

(
−1

4

)k−1
·#(full binary trees with k leaves) , (A.8)

where each additional application of eq. (A.6) to a pair of boring ω(Bi) involves a prefactor of
−1

4 . Finally, since full binary trees with k leaves are counted by the Catalan number Ck−1 [52]
with

Cn = (2n)!
(n+ 1)!n! = 2n (2n− 1)!!

(n+ 1)! , (A.9)

we recover the coefficients D2k = (−1)k−1

22k−1 Ck−1 in eq. (A.2) from eq. (A.8).

A.2 More general Fay identities

The relation eq. (2.25) among elliptic iterated integrals yields various Fay identities in the limit
z → 1 and generalizes as follows to multiple appearances of the argument among the labels:

Γ
( n1 n2 ... nk nk+1 ... nr
z z ... z 0 ... 0 ; z

)
= (−1)k ζ (0 . . . 0︸ ︷︷ ︸

r−k
1 . . . 1︸ ︷︷ ︸

k

)
r∏

j=1
δnj ,1

− (−1)nk
∫ z

0
dt f (nk+nk+1)(t) Γ

(
n1 ... nk−1 0 nk+2 ... nr
t ... t 0 0 ... 0 ; t

)
(A.10)

+
nk+1∑

j=0

(
nk − 1 + j

j

)∫ z

0
dt f (nk+1−j)(t) Γ

(
n1 ... nk−1 nk+j nk+2 ... nr
t ... t t 0 ... 0 ; t

)

+
nk∑

j=0

(
nk+1 − 1 + j

j

)
(−1)nk+j

∫ z

0
dt f (nk−j)(t) Γ

(
n1 ... nk−1 nk+1+j nk+2 ... nr
t ... t 0 0 ... 0 ; t

)
.

The MZV in the first line stems from the limit z → 0 of Γ( 1 ··· 1
z ··· z︸ ︷︷ ︸
k

1 ··· 1
0 ··· 0︸ ︷︷ ︸
r−k

; z), where every f (1)(z)

can be replaced by 1
z in this regime. As explained in ref. [5], the elliptic iterated integrals then

reduce to particular instances of multiple polylogarithms, which can be shown to yield MZVs in
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this case.
The first novel eMZV relations follow from the limit z → 1 of eq. (A.10) at k = 2 and

r = 4, 5:

Γ ( n1 n2 n3 n4
z z 0 0 ; z) = −1

4 ζ4 δn1,1δn2,1δn3,1δn4,1 − (−1)n2
∫ z

0
dt f (n2+n3)(t) Γ

(
n1 0 n4
t 0 0 ; t

)

+
n3∑

j=0

(
n2 − 1 + j

j

)∫ z

0
dt f (n3−j)(t) Γ

(
n1 n2+j n4
t t 0 ; t

)
(A.11)

+
n2∑

j=0

(
n3 − 1 + j

j

)
(−1)n2+j

∫ z

0
dt f (n2−j)(t) Γ

(
n1 n3+j n4
t 0 0 ; t

)

Γ ( n1 n2 n3 n4 n5
z z 0 0 0 ; z) = (2 ζ5− ζ2 ζ3)

( 5∏

j=1
δnj ,1

)
− (−1)n2

∫ z

0
dt f (n2+n3)(t) Γ

(
n1 0 n4 n5
t 0 0 0 ; t

)

+
n3∑

j=0

(
n2 − 1 + j

j

)∫ z

0
dt f (n3−j)(t) Γ

(
n1 n2+j n4 n5
t t 0 0 ; t

)
(A.12)

+
n2∑

j=0

(
n3 − 1 + j

j

)
(−1)n2+j

∫ z

0
dt f (n2−j)(t) Γ

(
n1 n3+j n4 n5
t 0 0 0 ; t

)
.

In particular, note that the product ζ2 ζ3 is absent in eq. (2.25) at r = 5. Also, note that the
divergent nature of f (1) causes extra complications in the limit z → 1 of eq. (A.11) if ni = 1 for
i = 1, 2, 3, 4 and eq. (A.12) if n2 = n3 = n4 = 1 and one of n1 = 1 or n5 = 1.

B Iterated Eisenstein integrals versus eMZVs: examples

In this appendix, we supplement further examples for the conversion of eMZVs into modified
iterated Eisenstein integrals as defined in eq. (4.54).

B.1 Conversion of ω(0, 0, . . . , 0, n)

For eMZVs with only one non-zero entry, a closed formula can be given for their conversion into
iterated Eisenstein integrals. At length `ω = 4 and `ω = 5, eqs. (4.58a) and (4.58b) can be
generalized to

ω(0, 0, 0, n) = δn,1

(
iπ

12 + ζ3
4π2

)
+ n

3! γ0(n+ 1) + n(n+ 1)(n+ 2) γ0(n+ 3, 0, 0) (B.1)

ω(0, 0, 0, 0, n) = −2 ζn
5! −

n

3!(n+ 1) γ0(n+ 2, 0)− n(n+ 1)(n+ 2)(n+ 3) γ0(n+ 4, 0, 0, 0) ,
(B.2)

where n is chosen to be odd in eq. (B.1) and even in eq. (B.2). At arbitrary length `, we have

ω(0, 0, . . . , 0︸ ︷︷ ︸
`−1

, n) =





ω0(0`−1, n) +
∑

i=1,3,5,
...,`−1

γ0(n+ i, 0i−1)
(`− i)!

i−1∏

j=0
(n+ j) : ` even, n odd

−2 ζn
`! −

∑

i=2,4,6,
...,`−1

γ0(n+ i, 0i−1)
(`− i)!

i−1∏

j=0
(n+ j) : ` odd, n even

, (B.3)
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where the constant term for odd values of n vanishes except for weight one,

ω0(0`−1, n) = δn,1

{
iπ

2(`− 1)! −
b`/2c−1∑

k=1

(−1)k(
`− (2k + 1)

)
!
ζ2k+1
(4π2)k

}
. (B.4)

The q-expansion of eq. (B.3) can be inferred from the special case of eq. (4.64),

γ0(k, 0p−1) = −2(2πi)k−2p

(k − 1)!

∞∑

n=1

σk−1(n)qn
np

, (B.5)

see eq. (4.63) for the definition of the divisor sum σk(n).

B.2 Conversion of indecomposable eMZVs at `ω ≥ 3

Among the indecomposable eMZVs beyond ω(0, . . . , 0, n), the simplest case ω(0, 3, 5) is converted
to (modified) iterated Eisenstein integrals in eqs. (4.15) and (4.61). Beyond that, we find for
example

ω(0, 3, 7) = −1848 γ(12, 0)− 294 γ(8, 4) + nmt

= −1848 γ0(12, 0)− 294 γ0(8, 4)− 75
(
γ0(6)

)2 + 588 ζ4 γ0(8, 0)− 504 ζ8 γ0(4, 0)
ω(0, 3, 9) = −5616 γ(14, 0)− 729 γ(10, 4)− 315 γ(8, 6) + nmt

= −5616 γ0(14, 0)− 729 γ0(10, 4)− 315 γ0(8, 6)− 210 γ0(6) γ0(8)
+ 1458 ζ4 γ0(10, 0) + 630 ζ6 γ0(8, 0)− 630 ζ6 γ0(6, 0)− 1350 ζ10 γ0(4, 0)

ω(0, 3, 11) = −13695 γ(16, 0)− 1452 γ(12, 4)− 990 γ(10, 6) + nmt

= −13695 γ0(16, 0)− 1452 γ0(12, 4)− 735
2
(
γ0(8)

)2 − 990 γ0(10, 6)− 270 γ0(6) γ0(10)

+ 2904 ζ4 γ0(12, 0) + 1980 ζ6 γ0(10, 0)− 1980 ζ10 γ0(6, 0)− 2772 ζ12 γ0(4, 0)
ω(0, 5, 9) = −30105 γ(16, 0)− 5445 γ(12, 4)− 3105 γ(10, 6) + nmt

= −30105 γ0(16, 0)− 5445 γ0(12, 4)− 3105 γ0(10, 6)− 735
2
(
γ0(8)

)2

+ 10890 ζ4 γ0(12, 0) + 6210 ζ6 γ0(10, 0)− 5850 ζ10 γ0(6, 0)− 8910 ζ12 γ0(4, 0) (B.6)

at length three, and

ω(0, 0, 2, 3) = 252 γ(8, 0, 0)− 18 γ(4, 4, 0) + 5
6 γ(6) + nmt

= 252 γ0(8, 0, 0)− 18 γ0(4, 4, 0) + 5
6 γ0(6)− 72 ζ4 γ0(4, 0, 0)

ω(0, 0, 2, 5) = 2826 γ(10, 0, 0) + 150 γ(6, 4, 0) + 180 γ(6, 0, 4) + 7
6 γ(8) + nmt

= 2826 γ0(10, 0, 0) + 150 γ0(6, 4, 0) + 180 γ0(6, 0, 4) + 7
6 γ0(8)

− 660 ζ4 γ0(6, 0, 0) + 180 ζ6 γ0(4, 0, 0)

ω(0, 0, 4, 3) = −2340 γ(10, 0, 0)− 300 γ(6, 4, 0)− 120 γ(6, 0, 4) + 7
6 γ(8) + nmt

= −2340 γ0(10, 0, 0)− 300 γ0(6, 4, 0)− 120 γ0(6, 0, 4)− 60 γ0(4) γ0(6, 0) + 7
6 γ0(8)

+ 480 ζ4 γ0(6, 0, 0)− 1080 ζ6 γ0(4, 0, 0)− 3 ζ4 γ0(4) (B.7)
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at length four, where “nmt” refers to non-maximal terms as explained after eq. (4.17a). The
q-expansion of the constituents is given by eq. (4.64).

C Examples for relations in the derivation algebra u

C.1 Known relations

Irreducible relations rdepth
weight are listed in table 5. For depth two, all relations can be obtained

from eq. (4.42). At depth three, we can confirm the relations listed in eq. (4.28c) as well as [24]:

r3
20 : 0 = 1050[ε0, [ε6, ε14]]− 6580[ε0, [ε8, ε12]] + 4320[ε4, [ε0, ε16]]− 10970[ε4, [ε4, ε12]]

+ 166675[ε4, [ε6, ε10]]− 17150[ε6, [ε0, ε14]]− 500675[ε6, [ε6, ε8]] + 30184[ε8, [ε0, ε12]]
+ 80388[ε8, [ε4, ε8]]− 17325[ε10, [ε0, ε10]] (C.1)

r3
22 : 0 = 40[ε0, [ε6, ε16]]− 280[ε0, [ε8, ε14]] + 910[ε0, [ε10, ε12]]− 360[ε4, [ε0, ε18]]

− 11535[ε4, [ε6, ε12]] + 6069[ε4, [ε8, ε10]] + 1320[ε6, [ε0, ε16]] + 15140[ε6, [ε4, ε12]]
− 7150[ε6, [ε6, ε10]]− 1820[ε8, [ε0, ε14]]− 12922[ε8, [ε6, ε8]] + 858[ε10, [ε0, ε12]] (C.2)

r4
18 : 0 = [ε0, [ε0, [ε6, ε12]]]− 215

74 [ε0, [ε0, [ε8, ε10]]]− 2323
518 [ε0, [ε4, [ε6, ε8]]] + 218

37 [ε0, [ε6, [ε4, ε8]]]

+ 60
407[ε4, [ε0, [ε0, ε14]]] + 285561

5698 [ε4, [ε0, [ε6, ε8]]] + 8599
1628[ε4, [ε4, [ε0, ε10]]]

+ 53855
444 [ε4, [ε4, [ε4, ε6]]]− 691

333[ε6, [ε0, [ε0, ε12]]]− 19853
518 [ε6, [ε0, [ε4, ε8]]]

− 691
74 [ε10, [ε0, [ε0, ε8]]] + 691

111[ε12, [ε0, [ε0, ε6]]]− 60
37[ε14, [ε0, [ε0, ε4]]]− 87595

1554 [ε6, [ε4, [ε0, ε8]]]

+ 17275
333 [ε6, [ε6, [ε0, ε6]]] + 3455

518 [ε8, [ε0, [ε0, ε10]]] + 49565
518 [ε8, [ε0, [ε4, ε6]]] (C.3)

r4
22 : 0 = [ε0, [ε0, [ε8, ε14]]] + 192903

230 [ε0, [ε4, [ε6, ε12]]]− 861492
805 [ε0, [ε6, [ε4, ε12]]]

+ 134488
161 [ε0, [ε6, [ε6, ε10]]] + 6588

805 [ε4, [ε0, [ε0, ε18]]] + 269217
805 [ε4, [ε0, [ε6, ε12]]]

− 39418
115 [ε4, [ε0, [ε8, ε10]]]− 13253

115 [ε4, [ε4, [ε0, ε14]]]− 18221
115 [ε4, [ε4, [ε6, ε8]]]

+ 33109
322 [ε6, [ε0, [ε6, ε10]]] + 25095129

37375 [ε6, [ε4, [ε0, ε12]]] + 11266827
5750 [ε6, [ε4, [ε4, ε8]]]

− 786557
644 [ε6, [ε6, [ε0, ε10]]] + 80233

1265 [ε8, [ε0, [ε0, ε14]]] + 21742068
6325 [ε8, [ε0, [ε6, ε8]]]

− 112835
253 [ε8, [ε4, [ε0, ε10]]] + 403764

115 [ε8, [ε4, [ε4, ε6]]] + 644938
575 [ε8, [ε6, [ε0, ε8]]]

− 103859
115 [ε10, [ε0, [ε4, ε8]]] + 301851

8050 [ε12, [ε0, [ε0, ε10]]] + 734133
805 [ε12, [ε0, [ε4, ε6]]]

− 493889
8050 [ε10, [ε0, [ε0, ε12]]]− 372888

10465 [ε6, [ε0, [ε0, ε16]]]− 23054063
52325 [ε6, [ε0, [ε4, ε12]]]

− 1015637
1150 [ε0, [ε4, [ε8, ε10]]]− 27458211

3220 [ε6, [ε6, [ε4, ε6]]]− 23679
8050 [ε0, [ε0, [ε10, ε12]]]

− 1913
115 [ε14, [ε0, [ε0, ε8]]] + 672

115[ε16, [ε0, [ε0, ε6]]]− 972
805[ε18, [ε0, [ε0, ε4]]] (C.4)
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C.2 New relations

At depth 5 we explicitly isolated the irreducible relation r5
20, which is apparently new:

r5
20 : 0 = 2206388620800 [ε0, [ε0, [ε0, [ε4, ε16]]]]− 8366188740000 [ε0, [ε0, [ε0, [ε6, ε14]]]]

+ 12305858292000 [ε0, [ε0, [ε0, [ε8, ε12]]]]− 1834700544000 [ε0, [ε4, [ε0, [ε0, ε16]]]]
+ 35687825530800 [ε0, [ε4, [ε0, [ε4, ε12]]]]− 109425220173750 [ε0, [ε4, [ε0, [ε6, ε10]]]]
− 39970750599360 [ε0, [ε4, [ε4, [ε0, ε12]]]]− 380488416808500 [ε0, [ε4, [ε4, [ε4, ε8]]]]
+ 13171256280000 [ε0, [ε6, [ε0, [ε0, ε14]]]] + 220479512028750 [ε0, [ε6, [ε0, [ε4, ε10]]]]
− 498847136287500 [ε0, [ε6, [ε0, [ε6, ε8]]]] + 220479512028750 [ε0, [ε6, [ε4, [ε0, ε10]]]]
− 458212979593200 [ε0, [ε6, [ε4, [ε4, ε6]]]] + 17540335312500 [ε0, [ε6, [ε6, [ε0, ε8]]]]
− 34407225652800 [ε0, [ε8, [ε0, [ε0, ε12]]]]− 97419791414400 [ε0, [ε8, [ε0, [ε4, ε8]]]]
− 197536749664800 [ε0, [ε8, [ε4, [ε0, ε8]]]] + 22970739577500 [ε0, [ε10, [ε0, [ε0, ε10]]]]
+ 161385266688750 [ε0, [ε10, [ε0, [ε4, ε6]]]] + 611566848000 [ε4, [ε0, [ε0, [ε0, ε16]]]]
− 58836403790864 [ε4, [ε0, [ε0, [ε4, ε12]]]] + 134572047805000 [ε4, [ε0, [ε0, [ε6, ε10]]]]
+ 965866444426884 [ε4, [ε0, [ε4, [ε4, ε8]]]] + 92810063342256 [ε4, [ε4, [ε0, [ε0, ε12]]]]
− 204658497503460 [ε4, [ε4, [ε0, [ε4, ε8]]]] + 541534390897500 [ε4, [ε4, [ε4, [ε0, ε8]]]]
− 215755493216250 [ε4, [ε6, [ε0, [ε0, ε10]]]]− 1490371718737200 [ε4, [ε6, [ε0, [ε4, ε6]]]]
+ 1032598095322950 [ε4, [ε6, [ε4, [ε0, ε6]]]] + 298655975581600 [ε4, [ε8, [ε0, [ε0, ε8]]]]
− 220479512028750 [ε4, [ε10, [ε0, [ε0, ε6]]]] + 54837332264496 [ε4, [ε12, [ε0, [ε0, ε4]]]]
− 6941740260000 [ε6, [ε0, [ε0, [ε0, ε14]]]]− 220479512028750 [ε6, [ε0, [ε0, [ε4, ε10]]]]
+ 231883232831250 [ε6, [ε0, [ε0, [ε6, ε8]]]] + 519528504682200 [ε6, [ε0, [ε4, [ε4, ε6]]]]
− 220479512028750 [ε6, [ε4, [ε0, [ε0, ε10]]]]− 2120947122294000 [ε6, [ε4, [ε0, [ε4, ε6]]]]
− 1538522546497950 [ε6, [ε4, [ε4, [ε0, ε6]]]] + 249423568143750 [ε6, [ε6, [ε0, [ε0, ε8]]]]
− 266963903456250 [ε6, [ε8, [ε0, [ε0, ε6]]]] + 23162632092600 [ε8, [ε0, [ε0, [ε0, ε12]]]]
+ 184988881773150 [ε8, [ε0, [ε0, [ε4, ε8]]]] + 310347440367510 [ε8, [ε4, [ε0, [ε0, ε8]]]]
− 183822714075000 [ε8, [ε6, [ε0, [ε0, ε6]]]] + 171943360038450 [ε8, [ε8, [ε0, [ε0, ε4]]]]
− 22551859687500 [ε10, [ε0, [ε0, [ε0, ε10]]]]− 240755752121625 [ε10, [ε0, [ε0, [ε4, ε6]]]]
− 104628710038125 [ε10, [ε4, [ε0, [ε0, ε6]]]]− 14987648446875 [ε10, [ε6, [ε0, [ε0, ε4]]]]
+ 11918038532400 [ε12, [ε0, [ε0, [ε0, ε8]]]] + 46293152724000 [ε12, [ε4, [ε0, [ε0, ε4]]]]
− 8366188740000 [ε14, [ε0, [ε0, [ε0, ε6]]]] . (C.5)

The complete set of all irreducible relations known to us is available from

https://tools.aei.mpg.de/emzv ,

and all of them have been verified by evaluating the action on the letters x, y via eq. (4.26).
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The meta-abelian elliptic KZB associator and periods of
Eisenstein series

Nils Matthes

Abstract
We consider the image of Enriquez’s elliptic KZB associator in the meta-abelian quotient of the
fundamental Lie algebra of a once-punctured elliptic curve. Our main result is an explicit formula
for this image, which involves Zagier’s extended period polynomials of Eisenstein series, as well as a
certain subset of the iterated Eisenstein integrals, introduced by Manin and Brown.

1 Introduction

Let τ be a point in the upper half-plane, and let E×
τ := C/(Z+Zτ)\{0} be the associated once-punctured,

complex elliptic curve. The elliptic Knizhnik-Zamolodchikov-Bernard (KZB) equation [2, 10, 6] is the
universal differential equation on E×

τ with unipotent monodromy around 0. It plays an important role
in a variety of subjects, such as elliptic braid groups [2], invariants of 3-manifolds [8], and universal
mixed elliptic motives [7]. The monodromy of the elliptic KZB equation is described by the elliptic KZB
associator [5]

(Φ, A(τ), B(τ)) ∈ C〈〈x, y〉〉 × C〈〈x, y〉〉 × C〈〈x, y〉〉, (1.1)

where C〈〈x, y〉〉 denotes the C-algebra of formal power series in non-commuting variables x and y. Here
Φ is the Drinfeld associator [3] and A(τ) and B(τ) are holomorphic functions of τ . The elliptic KZB
associator satisfies several functional equations reflecting its relation to elliptic braid groups, as well as a
differential equation, which is closely connected to a certain Lie algebra of derivations [18, 15].

Additional structure of the elliptic KZB associator is revealed by considering its formal logarithm
(ϕ,A(τ),B(τ)) ∈ L̂ × L̂ × L̂. Here, L̂ is the completion (for the lower central series) of the free Lie
algebra on the set {x, y}. Let L̂(1) := [L̂, L̂] be the commutator, and L̂(2) := [L̂(1), L̂(1)] the double
commutator of L̂. Write

L̂met−ab := L̂/L̂(2) (1.2)

for the meta-abelian quotient of L̂. Given f ∈ L̂, we will denote by fmet−ab its image in L̂met−ab. It is
well-known that there is a natural isomorphism L̂/L̂(2) ∼= L̂/L̂(1) ⊕L̂(1)/L̂(2) ∼= (Cx⊕Cy)⊕C[[X, Y ]], and
we will usually identify elements of L̂met−ab under this isomorphism, i.e. we write fmet−ab = f (0) + f (1),
where f (0) ∈ Cx ⊕ Cy and f (1) ∈ C[[X, Y ]]. In this paper, we are mainly interested in the image

(ϕmet−ab,A(τ)met−ab,B(τ)met−ab) ∈ L̂met−ab × L̂met−ab × L̂met−ab, (1.3)

of the logarithm of the elliptic KZB associator in the meta-abelian quotient of L̂. To begin with, the
computation of ϕmet−ab is a classical result of Drinfeld.

Proposition 1.1 ([3], §2). Let ϕmet−ab = ϕ(0) + ϕ(1) as above. Then ϕ(0) = 0 and

ϕ(1) = (X · Y )−1

[
exp

( ∞∑

n=2

ζ(n)
n · (2πi)n

(Xn + Y n − (X + Y )n)
)

− 1
]

= (X · Y )−1
[

Γ(1 − X)Γ(1 − Y )
Γ(1 − (X + Y ))

− 1
]

, (1.4)

where X = X/2πi and Y = Y/2πi. Here, Γ(s) =
∫∞

0 ts−1e−tdt denotes the classical Gamma function,
and the last line is defined by the expansion log(Γ(1−z)) = γz+

∑
k≥2

ζ(k)
k zk, where γ is Euler’s constant.
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The main goal of the present paper is to find a formula for A(τ)met−ab and B(τ)met−ab, thus completing
the description of (1.3). In order to simplify the resulting formulas, we will make the change of variables
a := 2πix and b := y, as well as Ak := (2πi)k+1Xk and Bk = 2πiY k. It is relatively easy to show that
(cf. Proposition 3.2)

A(τ)(0) = −b, B(τ)(0) = a − τb. (1.5)

In order to write down a formula for A(τ)(1) and B(τ)(1), we need iterated Eisenstein integrals [11, 1]

E(2k1, . . . , 2kn; τ) :=
∫ i∞

τ

E2k1 (τ1)dτ1 . . . E2kn(τn)dτn, k1, . . . , kn ≥ 0. (1.6)

Our conventions are the same as in [1], in particular the integration starts on the left, and E2k(τ) :=
− B2k

4k +
∑

n≥1 σ2k−1(n)qn the Hecke-normalized Eisenstein series (we also set E0(τ) = −1). Here as usual,
B2k denotes the 2k-th Bernoulli number, σm(n) :=

∑
d|n dm is the m-th divisor function, and q = e2πiτ .

Theorem 1.2. Let A(1)
∞ be the value of A(τ)(1) at the tangential base point −→1 ∞ at i∞ [1], and define

B(1)
∞ likewise. We have:

(i)

A(τ)(1) = A(1)
∞ +

∑

m≥0, n≥1

2
(m + n − 1)!αm,n(τ)

(
−B

∂

∂A

)n−1
Am+n−1B, (1.7)

where

A(1)
∞ = −


∑

k≥2
λkAk−1 + 1

4B −
∑

k≥3,odd

ζ(k)
(2πi)k

Bk


 (1.8)

λk := Bk

k! , and αm,n(τ) = −E({0}n−1, m+n+1; τ)+ Bm+n+1
2(m+n+1) E({0}n; τ). In particular, αm,n(τ) =

0, if m + n ≥ 1 is even.

(ii)

B(τ)(1) = B(1)
∞ −

∑

r≥1
E({0}r; τ)

∑

m,n≥0
cm,n

[(
−B

∂

∂A

)r

AmBn

]

+


∑

k≥1

2
(2k − 2)!

{
E({0}r−1, 2k; τ) + 1

2k − 1E({0}r−2, 2k, 0; τ)
}(

−B
∂

∂A

)r−1
A2k−1


 ,

(1.9)

where

B(1)
∞ = −


∑

k≥2
λkBk−1 +

∑

k≥3, odd

ζ(k)
(2πi)k

ABk−1 +
∑

m,n≥2
λmλnAmBn−1


 . (1.10)

Here, we set E({0}−1, 2k, 0; τ) := 0, and cm,n is defined as the coefficient of AmBn in B(1)
∞ .

This theorem can be seen as an analogue of a formula of Nakamura ([13], Theorem 3.3) for the Galois
action on the meta-abelian quotient of the étale fundamental group of a once-punctured elliptic curve
[13, 14]. Interestingly, the proof of Theorem 1.2 uses no linear or algebraic relation between iterated
Eisenstein integrals. In fact, with the exception of the shuffle relations, there are no algebraic relations
between iterated Eisenstein integrals [12].

We now describe a relation between the series A(1)
∞ , B(1)

∞ and period polynomials. First, recall that one
can associate to every cusp form f of weight k for SL2(Z) a homogeneous polynomial rf (A, B) ∈ C[A, B]
of degree k − 2, called its period polynomial (cf. e.g. [9]). In [20], Zagier has extended the notion of
period polynomial to arbitrary modular forms (but still for SL2(Z)); in particular, he defines the extended
period polynomial rE2k

(A, B) of the Eisenstein series E2k. This is no longer a polynomial, but lives in
the slightly bigger space

⊕
−1≤n≤2k−1 C · AnB2k−2−n.

2
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Theorem 1.3. The extended period polynomial rE2k
(A, B) of the Eisenstein series E2k equals

(2k − 2)!
2

(
Ã(A, B)+

2k−2 + B̃(B, A)+
2k−2 + Ã(A, B)−

2k−2 + B̃(A, B)−
2k−2

)
, (1.11)

where Ã(A, B) = B−1A(1)
∞ (A, B) and B̃(A, B) = A−1B(1)

∞ (A, B). Here, a subscript 2k − 2 denotes the
homogeneous component of degree 2k − 2, and the superscript + (resp. −) denotes the invariants (resp.
anti-invariants) with respect to (A, B) 7→ (−A, B).

Put differently, the series A(1)
∞ and B(1)

∞ can be viewed as the generating series for the extended period
polynomials of Eisenstein series.

We briefly describe the content of the paper. In Section 2, we collect some background on the elliptic
KZB associator. We also recall the definition of a certain family of derivations on L̂ (the Eisenstein
derivations), which play a key role in the study of the elliptic KZB associator. In Section 3, we compute
the action of these derivations on the meta-abelian quotient of L̂. This computation is needed in Section
4, where we prove Theorems 1.2 and 1.3.

Acknowledgments. Very many thanks to Benjamin Enriquez and Hiroaki Nakamura for valuable
discussions during the conference “GRT, MZVs and Associators” held in Les Diablerets during August
2015. It was these discussions, which prompted me to think about the meta-abelian image of the elliptic
KZB associator. I would also like to thank the organizers of said conference, in particular Anton Alekseev,
for the invitation. Moreover, many thanks to Francis Brown, Benjamin Enriquez and Hidekazu Furusho
for very valuable comments on an earlier version of this paper, and for correcting some inaccuracies. This
work was done during the author’s time as a PhD student at Universität Hamburg under the supervision
of Ulf Kühn.

2 Preliminaries

Let L denote the free C-Lie algebra on the set {x, y}, and L̂ its completion with respect to the lower
central series. A good reference for free Lie algebras is [17].

2.1. Eisenstein derivations. We begin by describing a family of derivations on L, which were first
introduced in a slightly different context in [18]. For k ≥ 0, define ε2k : L → L by

ε2k(x) = ad2k(x)(y), ε2k(y) =
∑

0≤j<k

(−1)j[adj(x)(y), ad2k−1−j(x)(y)], (2.1)

where ad(x)(y) := [x, y] and adk(x)(y) := [x, adk−1(x)(y)] for k ≥ 1. Note that every ε2k annihilates the
commutator [x, y]:

ε2k([x, y]) = 0, ∀k ≥ 0, (2.2)
(cf. [15]). Since the derivations ε2k preserve the lower central series of L, they pass to L̂. We also set

ε̃2k =
{

2
(2k−2)! ε2k k > 0
−ε0 k = 0,

(2.3)

and call these derivations Eisenstein derivations.1

2.2. The elliptic KZB associator. Consider the following classical Kronecker-Eisenstein series
[19, 20]

Fτ (ξ, α) := θ′
τ (0)θτ (ξ + α)
θτ (ξ)θτ (α) , ξ, α ∈ C (2.4)

with θτ (ξ) the standard odd Jacobi theta function, and τ ∈ H := {z ∈ C | Im(z) > 0}. As proved for
example in [20], the Kronecker-Eisenstein series is meromorphic and has a simple pole at α = 0. In partic-
ular it possesses a Laurent expansion Fτ (ξ, α) =

∑
k≥0 f (k)(ξ)αk−1, where the f (k)(ξ) are meromorphic.

We also set ad(x)Fτ (ξ, ad(x))(y) =
∑

k≥0 f (k)(ξ) adk(x)(y).
1This name is justified by the fact that, for k ≥ 0, the derivation ε̃2k is the image of the Eisenstein generator e2k ∈ ugeom

under the monodromy morphism ugeom → Der(L), where ugeom denotes the geometric fundamental Lie algebra of a certain
category of mixed elliptic motives [7].

3
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Now let U := {c + dτ | c, d ∈ (0, 1)} ⊂ C \ (Z + Zτ). As shown in [5], there exist unique solutions
G0, G1 : U → C〈〈x, y〉〉 to the equation

∂g

∂ξ
= − ad(x)Fτ (ξ, ad(x))(y) · g (2.5)

with the asymptotic G0(s) ∼ (−2πis)−[x,y] as s → 0 and G1(s) ∼ (−2πi(1 − s))−[x,y] as s → 1. Likewise,
there exist unique solutions H0, H1 : U → C〈〈x, y〉〉 to the equation

∂h

∂ξ
=
(

2πi

τ
· x − ad(x)e 2πi

τ ad(x)Fτ (ξ, ad(x))(y)
)

· h (2.6)

with the asymptotic H0(s) ∼ (−2πis)−[x,y] as s → 0 and H1(s) ∼ (−2πi(1 − s))−[x,y].

Definition 2.1 (Enriquez, [5], §6.2). The elliptic KZB associator is the triple (Φ, A(τ), B(τ)) ∈ (C〈〈x, y〉〉)3 ,
where Φ denotes the Drinfeld associator, and

A(τ) = G−1
1 (s)G0(s), B(τ) = H−1

1 (s)H0(s). (2.7)

By a standard result on linear differential equations (cf. [16], Theorem 3.2), there exist formal Lie
series A(τ),B(τ) ∈ L̂ such that

A(τ) = log(A(τ)), B(τ) = log(B(τ)). (2.8)

Remark 2.2. The original definition of the elliptic KZB associator given in [5] is slightly different, but
essentially equivalent to the one given here. More precisely, denoting by (Φ, A(τ), B(τ)) the version
introduced in [5], we have A(τ) = e−πi[x,y]A(τ) and B(τ) = eπi[x,y]B(τ), i.e. the two definitions differ
only by constant prefactors.

The elliptic KZB associator can be expressed using iterated Eisenstein integrals. To simplify the
formulas, it is useful to work with the variables a = 2πix and b = y instead of x, y. Let

g(τ) =
∑

E(2k; τ)ε̃2k, (2.9)

where the sum is over all multi-indices 2k := (2k1, . . . , 2kn). Here, we set ε̃2k := ε̃2k1 ◦ . . . ◦ ε̃2kn

and E(2k; τ) denotes the indefinite iterated Eisenstein integral, as in (1.6). Since g(τ) satisfies a linear
differential equation with values in the Lie algebra of derivations Der(L̂), it follows that for fixed τ , g(τ)
is a continuous automorphism of C〈〈a, b〉〉.

Proposition 2.3 (Enriquez). We have A(τ) = g(τ)(A∞) and B(τ) = g(τ)(B∞), where

A∞ = e
t
2 Φ(ỹ, t)eỹΦ(ỹ, t)−1, B∞ = Φ(−ỹ − t, t)eaΦ(ỹ, t)−1. (2.10)

with variables t = −[a, b] and ỹ = − ad(a)
ead(a)−1 (b) = −∑n≥0

Bn

n! adn(a)(b).

Proof: This is proved in [4], Section 5.2, using in addition that ε̃2k([a, b]) = 0 (2.2).2

The series A∞ and B∞ are the regularized limits of the series A(τ) and B(τ), as τ → i∞. In particular,
they are also exponentials of formal Lie series, and we define A∞ := log(A∞), B∞ := log(B∞).

3 Action of Eisenstein derivations on the meta-abelian quotient
We compute the action of the derivations ε̃2k on the meta-abelian quotient

L̂met−ab := L̂/L̂(2) (3.1)
2In [4], the series A(τ) and B(τ) are written down in variables x, y, which is why the formulas there look slightly different

from the ones given here.
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of L̂. Here, L̂(2) is the second term in the derived series of L̂, i.e. L̂(2) = [L̂(1), L̂(1)] is the double
commutator of L̂. Note that the quotient L̂ab := L̂/L̂(1) ∼= Ca ⊕ Cb is isomorphic to the abelianization
of L̂, and we have an isomorphism of C-vector spaces

L̂(1)/L̂(2) → C[[A, B]]
adk(a) adl(b)([a, b]) 7→ AkBl (3.2)

(cf. [3], §2). From this and from the short exact sequence 0 → L̂(1)/L̂(2) → L̂/L̂(2) → L̂/L̂(1) → 0, it
follows that

L̂met−ab ∼= L̂/L̂(1) ⊕ L̂(1)/L̂(2) ∼= (Ca ⊕ Cb) ⊕ C[[A, B]] (3.3)
as C-vector spaces. As already mentioned in the introduction, for an element f ∈ L̂, we will write
fmet−ab = f (0) + f (1) for its image in L̂met−ab, where f (0) ∈ Ca ⊕ Cb and f (1) ∈ C[[A, B]]. In order to
compute the action of the Eisenstein derivations ε̃2k on L̂met−ab, it is enough to compute their action on
C[[A, B]], since we already know their values on a and b by their definition (2.1).

Proposition 3.1. (i) Identifying L̂(1)/L̂(2) with C[[A, B]] as in (3.2), ε̃0 acts on L̂(1)/L̂(2) as the
derivation −B ∂

∂A , while for k > 0, ε̃2k acts trivially on L̂(1)/L̂(2).

(ii) Let 2k = (2k1, . . . , 2kn) be a multi-index, where ki ≥ 0. Then ε̃2k = ε̃2k1 ◦ . . .◦ ε̃2kn acts non-trivially
on L̂/L̂(2), if and only if either 2k = (0, . . . , 0, 2kn) or 2k = (0, . . . , 0, 2kn−1, 0).

Proof: By the Jacobi identity, the linear operators ad(a), ad(b) ∈ AutQ(L̂(1)/L̂(2)) commute with each
other. Consequently, we have

ε̃0(adk(a) adl(b)([a, b])) ≡
k−1∑

i=0
− adi(a) ad(b) adk−1−i(a) adl(b)([a, b])

≡ −k adk−1(a) adl+1(b)([a, b]) mod L̂(2), (3.4)

and the first part of (i) follows. The triviality of the action of ε̃2k on L̂(1)/L̂(2), for k > 0, follows
immediately from the definition of the ε̃2k (2.1) and the fact that they annihilate the commutator [a, b]
(2.2). Finally, ii) follows directly from i).

We now return to the elliptic KZB associator.

Proposition 3.2. We have
A(τ)(0) = −b, B(τ)(0) = a − τb. (3.5)

Proof: Consider the series A∞ = e
t
2 Φ(ỹ, t)eỹΦ(ỹ, t)−1 defined in Proposition 2.3. Since ϕ(x, y) =

log(Φ(x, y)) ∈ L̂(1), applying the Baker-Campbell-Hausdorff formula ([16], Corollary 3.24), and using
the fact that ỹ ≡ −b mod L̂(1), we get that

A∞ = log(A∞) ≡ −b mod L̂(1). (3.6)

From Proposition 2.3, we know that A(τ) = g(τ)(A∞) = g(τ)(exp(A(τ))), where g(τ) =
∑ E(2k; τ)ε̃2k.

Since g(τ) is a continuous automorphism of C〈〈a, b〉〉, it commutes with exponentiation, and we have
A(τ) = g(τ)(A∞). Moreover, since ε̃0 annihilates b and all other ε̃2k act trivially on L̂ab, we see that

g(τ)(A∞) ≡ −b mod L̂(1), (3.7)

hence A(τ)(0) = −b. The proof for B(τ)(0) is analogous. From the explicit formula B∞ = Φ(−ỹ −
t, t)eaΦ(ỹ, t)−1 and [16], Corollary 3.24, it follows that

B∞ = log(B∞) ≡ a mod L̂(1). (3.8)

The only ε̃2k, which acts non-trivially on a modulo L̂(1), is ε̃0, with ε̃0(a) = −b. Thus, using that
E(0; τ) = τ , we get

B(τ) = g(τ)(B∞) ≡ (id +(E(0; τ)ε̃0))(a) ≡ a − τb mod L̂(1). (3.9)

5
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4 Proofs of the main results

In this section, we prove Theorem 1.2, i.e. we compute A(τ)(1) and B(τ)(1). The plan of the proof is
essentially identical to the proof of Proposition 3.2, only technically more involved. To be precise, we
first compute A(1)

∞ and B(1)
∞ using the Baker-Campbell-Hausdorff formula. This is the content of Section

4.1. In Section 4.3, we then apply the element g(τ) to A(1)
∞ and B(1)

∞ , which yields Theorem 1.2.

4.1. The constant term. We will need the following proposition about the Drinfeld associator,
which is well-known. It can be deduced for example from (1.4).

Proposition 4.1. Let ϕ(x, y) := log(Φ(x, y)). Then

ϕ(ỹ, t) ≡ −
∑

n≥2

ζ(n)
(−2πi)n

adn−1(b)([a, b]) mod L̂(2), (4.1)

where ỹ = − ad(a)
ead(a)−1 (b) and t = −[a, b].

Theorem 4.2. We have

A(1)
∞ = −


∑

k≥2
λkAk−1 + 1

4B −
∑

k≥3,odd

ζ(k)
(2πi)k

Bk


 (4.2)

and

B(1)
∞ = −


∑

k≥2
λkBk−1 +

∑

k≥3, odd

ζ(k)
(2πi)k

ABk−1 +
∑

m,n≥2
λmλnAmBn−1


 , (4.3)

where λk := Bk

k! , with Bk denoting the k-th Bernoulli number.

Proof: Recall from Proposition 2.3 that A∞ = log(e t
2 Φ(ỹ, t)eỹΦ(ỹ, t)−1). Since ϕ(ỹ, t) ∈ L̂(1) by Propo-

sition 4.1, we obtain from [16], Corollary 3.24,

S := log(e t
2 Φ(ỹ, t)) ≡ ϕ(ỹ, t) +

∑

k≥0

Bk

k! adk(ϕ(ỹ, t))
(

t

2

)
≡ ϕ(ỹ, t) + t

2 mod L̂(2). (4.4)

Similarly, since ỹ ≡ −b mod L̂(1),

T := log(eỹΦ(ỹ, t)−1) ≡ − log(Φ(ỹ, t)e−ỹ) ≡ ỹ −
∑

k≥0

Bk

k! adk(−ỹ)(ϕ(ỹ, t))

≡ ỹ − ϕ(ỹ, t) −
∑

k≥1

Bk

k! adk(b)(ϕ(ỹ, t)) mod L̂(2). (4.5)

Combining (4.4) and (4.5) and again applying [16], Corollary 3.24, we get

A∞ ≡ T +
∑

n≥0

Bn

n! adn(T )(S)

≡ ỹ − ϕ(ỹ, t) −
∑

n≥1

Bn

n! adn(b)(ϕ(ỹ, t)) + ϕ(ỹ, t) + t

2 +
∑

k≥1

Bk

k! adk(ỹ)(ϕ(ỹ, t) + πit)

≡ ỹ + t

2 −
∑

k≥1

Bk

k! (adk(b)(ϕ(ỹ, t) − (−1)nϕ(ỹ, t))) +
∑

k≥1

Bk

k! adk(−b)
(

t

2

)
(4.6)

≡ ỹ + t

2 + ad(b)(ϕ(ỹ, t)) +
∑

k≥1

(−1)k

2
Bk

k! adk(b)(t),

≡ −b −
∑

k≥2

Bk

k! adk−1(a)([a, b]) + ad(b)(ϕ(ỹ, t)) +
∑

k≥1

(−1)k

2
Bk

k! adk(b)(t) mod L̂(2),

6
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where in the second to last line, we have used that B1 = − 1
2 and that B2n+1 = 0 for all n ≥ 1. Using

Proposition 4.1, it follows that

ad(b)(ϕ(ỹ, t)) +
∑

k≥1

(−1)k

2
Bk

k! adk(b)(t) = −
∑

k≥2

ζ(k)
(−2πi)k

adk(b)([a, b]) −
∑

k≥1
(−1)k Bk

2k! adk(b)([a, b]).

(4.7)

For even k ≥ 2, we have − ζ(k)
(−2πi)k = Bk

2k! , using Euler’s formula for ζ(2k). Thus (4.7) equals

− 1
4 ad(b)([a, b]) +

∑

k≥3,odd

ζ(k)
(2πi)k

adk(b)([a, b]), (4.8)

and (4.2), follows from combining (4.6) and (4.8), using the isomorphism (3.2) and noting that the
−b term does not contribute to A(1)

∞ . The calculation for B(1)
∞ is very similar. First, by definition

B∞ = log(Φ(−ỹ − t, t)eaΦ(ỹ, t)−1). Furthermore,

T := log(eaΦ(ỹ, t)−1) ≡ − log(Φ(ỹ, t)e−a) ≡ a −
∑

k≥0

Bk

k! adk(−a)(ϕ(ỹ, t))

≡ a − ϕ(ỹ, t) −
∑

k≥1

Bk

k! adk(−a)(ϕ(ỹ, t)) mod L̂(2). (4.9)

We obtain

B∞ ≡ log(Φ(−ỹ − t, t)eT ) ≡ T +
∑

k≥0

Bk

k! adk(T )(ϕ(−ỹ − t, t))

≡ T + ϕ(−ỹ − t, t) +
∑

k≥1

Bk

k! adk(a)(ϕ(−ỹ − t, t)) mod L̂(2), (4.10)

where the last equality follows from the fact that T ≡ a mod L̂(1). Calculating further, we get

T + ϕ(−ỹ − t, t) +
∑

k≥1

Bk

k! adk(a)(ϕ(−ỹ − t, t))

≡ a − ϕ(ỹ, t) + ϕ(−ỹ − t, t) −
∑

k≥1

Bk

k! (−1)k adk(a)(ϕ(ỹ, t)) +
∑

k≥1

Bk

k! adk(a)(ϕ(−ỹ − t, t))

≡ a − ϕ(ỹ, t) + ϕ(−ỹ − t, t) −
∑

k≥1

Bk

k! adk(a)
[
(−1)kϕ(ỹ, t)) − ϕ(−ỹ − t, t))

]

≡ a +
∑

k≥2

−ζ(k)
(−2πi)k

adk−1(b)(−[a, b]) +
∑

k≥2

−ζ(k)
(2πi)k

adk−1(b)(−[a, b])

−
∑

k≥1

Bk

k! adk(a)


(−1)k

∑

n≥2

ζ(n)
(−2πi)n

adn−1(b)(−[a, b]) −
∑

k≥2

−ζ(k)
(2πi)k

adk−1(b)(−[a, b])




(4.11)

≡ a +
∑

k≥2

[
1 − (−1)k−1

] ζ(k)
(−2πi)k

adk−1(b)([a, b]) + 1
2


−

∑

k≥2
(−1)k−1 + 1) ζ(k)

(2πi)k


 ad(a) adk−1(b)([a, b])

−
∑

m≥2, even

Bm

m!


∑

n≥2

[
(−1)n−1 − 1

] ζ(n)
(2πi)n


 adm(a) adn−1(b)([a, b]) mod L̂(2).

Again using that − ζ(k)
(−2πi)k = Bk

2k! , if k ≥ 2 is even, we obtain from (4.11)

−
∑

k≥2

Bk

k! adk−1(b)([a, b]) −
∑

k≥3, odd

ζ(k)
(2πi)k

ad(a) adk−1(b)([a, b])

−
∑

m≥2

Bm

m!
∑

n≥2

Bn

n! adm(a) adn−1(b)([a, b])

7

Appendix E. The meta-abelian elliptic KZB associator and periods of Eisenstein
series

204



≡ a −
[∑

k≥2

Bk

k! adk−1(b)([a, b]) +
∑

k≥3, odd

ζ(k)
(2πi)k

ad(a) adk−1(b)([a, b])

+
∑

m,n≥2

BmBn

m!n! adm(a) adn−1(b)([a, b])
]

mod L̂(2).

(4.12)

The first term a belongs to the abelianization, and does not contribute to B(1)
∞ . By applying the isomor-

phism L̂(1)/L̂(2) ∼= C[[A, B]] to the remaining terms in (4.12), we obtain the desired result (4.3).

4.2. The relation to period polynomials. We now show how Theorem 4.2 implies that A(1)
∞ and

B
(1)
∞ can be interpreted as generating series for the extended period polynomials of the Eisenstein series

E2k [20]. Recall that for k ≥ 2, the extended period polynomial rE2k
(A, B) of E2k equals

ω+
E2k

(A2k−2 − B2k−2) + ω−
E2k

∑

−1≤n≤2k−1
λn+1λ2k−1−nAnB2k−2−n ∈

⊕

−1≤n≤2k−1
C · AnB2k−2−n, (4.13)

where λk = Bk

k! and the numbers ω±
E2k

∈ C are given by ω+
E2k

= ζ(2k−1)
(2πi)2k−1 ω−

E2k
, ω−

E2k
= − (2k−2)!

2 . We
caution the reader that, despite its name, rE2k

is not a polynomial. Define

Ã(A, B) = 1
B
A(1)

∞ (A, B), B̃(A, B) = 1
A
B(1)

∞ (A, B). (4.14)

Both are elements of (C[[A, B]])[A−1 , B−1]. Now, for f ∈ C[[A, B]][A−1, B−1] we denote by fk its
homogeneous component of degree k. We also denote by fk = f+

k + f−
k the decomposition of fk into its

even and odd parts in A. Write Ã =
∑

k≥1 Ã2k−2, B̃ =
∑

k≥1 B̃2k−2. Comparing the explicit formula for
the extended period polynomials (4.13) with Theorem 4.2, it follows that for k ≥ 2,

rE2k
(A, B) = (2k − 2)!

2

(
Ã(A, B)+

2k−2 + B̃(B, A)+
2k−2 + Ã(A, B)−

2k−2 + B̃(A, B)−
2k−2

)
. (4.15)

This proves Theorem 1.3. Moreover, it also suggests a “definition” (which may or may not be new) of
the extended period polynomial for the quasi-modular form E2(τ) := − 1

24 +
∑

n≥1 σ1(n)qn, namely:

rE2 (A, B) := 1
2

(
Ã(A, B)+

0 + B̃(B, A)+
0 + Ã(A, B)−

0 + B̃(A, B)−
0

)

= 1
2

(
1
4 + λ2

2
A

B
+ λ2

2
B

A

)
= 1

24

(
3 + A

B
+ B

A

)
. (4.16)

4.3. The non-constant term. We now complete the proof of Theorem 1.2.

Proof: (of Theorem 1.2) We first prove i). By Proposition 2.3, A∞ = g(τ)(A∞) = g(τ)(exp(A∞)), where
g(τ) =

∑ E(2k; τ)ε̃2k. Since g(τ) is a continuous automorphism of C〈〈a, b〉〉, we have A(τ) = g(τ)(A∞)
and it follows that

A(τ)met−ab ≡ g(τ)(A∞) mod L̂(2), (4.17)
Now by Proposition 3.1 we see that the only multi-indices 2k = (2k1, . . . , 2kn) such that ε̃2k can possibly
act non-trivially on Amet−ab

∞ are given by (0, . . . , 0, 2k) and (0, . . . , 0, 2k, 0). But since Amet−ab
∞ contains

no linear term in a by Proposition 3.2, we see that only multi-indices of the shape (0, . . . , 0, 2k) with
k ≥ 0 can act non-trivially on Amet−ab

∞ , and using Theorem 4.2, we get

g(τ)(Amet−ab
∞ ) ≡ Amet−ab

∞ +
∑

n≥1
E({0}n; τ)ε̃n

0


∑

k≥2

−Bk

k! adk−1(a)([a, b])




+
∑

n≥1, k≥1
E({0}n−1, 2k; τ)(ε̃n−1

0 ◦ ε̃2k)(−b)

8
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≡ Amet−ab
∞ +

∑

n≥1
E({0}n; τ)

∑

k≥1

−B2k

(2k)! ε̃n
0 (ad2k−1(a)([a, b]))

−
∑

n≥1, k≥1

2
(2k − 2)!E({0}n−1, 2k; τ)ε̃n−1

0 (ad2k−2(a) ad(b)([a, b])) (4.18)

≡ Amet−ab
∞ +

∑

n≥1,k≥1

2
(2k − 2)!E({0}n; τ)B2k

4k
ε̃n−1

0 (ad2k−2(a) ad(b)([a, b]))

−
∑

n≥1, k≥1

2
(2k − 2)!E({0}n−1, 2k; τ)ε̃n−1

0 (ad2k−2(a) ad(b)([a, b])) mod L̂(2).

Under the isomorphism L̂(1)/L̂(2) of (3.2), adr(a) ads(b)([a, b]) is mapped to ArBs and by Proposition
3.1, the derivation ε̃0 corresponds to the derivation −B ∂

∂A of C[[A, B]]. Therefore, writing A(τ)met−ab =
A(τ)(0) + A(τ)(1) and setting m = 2k − 1 − n, we have

A(τ)(1) = A(1)
∞ +

∑

m≥0, n≥1

2
(m + n − 1)!αm,n(τ)

(
−B

∂

∂A

)n−1
Am+n−1B, (4.19)

where αm,n(τ) = −E({0}n−1, m + n + 1; τ) + Bm+n+1
2(m+n+1) E({0}n; τ), This proves i).

The proof of ii) is similar. First, recall from Theorem 4.2 that

B(0)
∞ = a, B(1)

∞ = −
∑

m,n≥0
cm,n adm(a) adn(b)([a, b]) mod L̂(2), (4.20)

where cm,n is the coefficient of AmBn in B(1)
∞ . Again by Proposition 3.1, the only ε̃2k, which act

non-trivially on Bmet−ab
∞ are the ones whose associated multi-index is equal to (0, . . . , 0, 2k) or to

(0, . . . , 0, 2k, 0). Using the explicit formulas for B(0)
∞ (3.5) and for B(1)

∞ (4.3) on the other hand, we
get that

g(τ)(Bmet−ab
∞ ) ≡ Bmet−ab

∞ + E(0; τ)ε̃0(a) −
∑

r≥1
E({0}r; τ)ε̃r

0


 ∑

m,n≥0
cm,n adm(a) adn(b)([a, b])




+
∑

k≥1
E({0}r−1, 2k; τ)(ε̃r−1

0 ◦ ε̃2k)(a)

+
∑

k≥1
E({0}r−2, 2k, 0; τ)(ε̃r−2

0 ◦ ε̃2k ◦ ε̃0)(a) mod L̂(2). (4.21)

Using (3.2) together with Proposition 3.1 and writing B(τ)met−ab = B(τ)(0) +B(τ)(1), we finally obtain

B(τ)(1) = B(1)
∞ −

∑

r≥1
E({0}r; τ)


 ∑

m,n≥0
cm,n

(
−B

∂

∂A

)r

AmBn




+
∑

k≥1

2
(2k − 2)!E({0}r−1, 2k; τ)

(
−B

∂

∂A

)r−1
A2k−1

−
∑

k≥1

2
(2k − 2)!E({0}r−2, 2k, 0; τ)

(
−B

∂

∂A

)r−2
A2k−2B, (4.22)

and (ii) follows.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit einem elliptischen Analogon der multiplen Zeta Werte,
den elliptischen multiplen Zeta Werten. Multiple Zeta Werte sind Verallgemeinerungen der
speziellen Werte der Riemannschen Zetafunktion, und lassen sich als homotopie-invariante
iterierte Integrale auf P1 \ {0, 1,∞} schreiben. In ähnlicher Weise sind elliptische multi-
ple Zeta Werte gegeben durch homotopie-invariante iterierte Integrale auf einer einfach
punktierten elliptischen Kurve.
Ziel dieser Arbeit war die Algebra der elliptischen multiplen Zeta Werte zu studieren. Da
es auf einer elliptischen Kurve zwei natürliche Homologie-Zyklen gibt, existieren zwei Al-
gebren EZA und EZB von elliptischen multiplen Zeta Werten, welche durch eine modulare
Transformation miteinander verbunden sind.
Per Definition sind die Erzeuger der Q-Algebra EZA gegeben durch die A-elliptischen
multiplen Zeta Werte. Eine der grundlegenden Arbeitshypothesen ist, dass die einzigen
Relationen in der Q-Algebra EZA gegeben sind durch shuffle und Fay Relationen. Darauf
aufbauend wird die Längenfiltrierung L(EZA) auf EZA studiert, und die Zahlen Dell

k,n :=
Ln(EZA

k )/Ln−1(EZA
k ) studiert. Für n ≤ 2 wird eine explizite Formel bewiesen, während

im Falle n = 3 ein Teilresultat erzielt werden.
Es wird gezeigt, dass die Algebra der elliptischen multiplen Zeta Werte in eine nicht-
kommutative Polynomalgebra in den Variablen e2k, mit k ≥ 0, eingebettet werden kann.
Es werden Resultate erzielt, welche das Bild dieser Einbettung genauer spezifizieren.
Es wird die Erzeugendenreihe der elliptischen multiplen Zeta Werte, der elliptische KZB
Assoziator studiert. Genauer berechnen wir das Bild des elliptischen KZB Assoziators im
meta-abelschen Quotienten der freien Lie Algebra auf zwei Erzeugern, und erhalten eine
Verbindung zu Periodenpolynomen von Eisensteinreihen
Es wird gezeigt, dass elliptische multiple Zeta Werte in Berechnungen der String Theorie
erscheinen. Genauer wird gezeigt, dass die offene Superstring Amplitude für eine Schleife
durch elliptische multiple Zeta Werte ausgedrückt werden kann.
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Abstract

The topic of this thesis is the study of an elliptic analogue of multiple zeta values, the
elliptic multiple zeta values. Multiple zeta values are generalizations of special values of
the Riemann zeta function, which can be written as homotopy invariant iterated integrals
on P1 \ {0, 1,∞}. In a similar way, elliptic multiple zeta values are given by homotopy
invariant iterated integrals on a once-punctured elliptic curve.
The goal of this work was to study the algebra of elliptic multiple zeta values. Since there
are two natural homology cycles on an elliptic curve, there exist two algebra EZA and
EZB of elliptic multiple zeta values, which are related to each other by a simple modular
transformation.
By definition, the Q-algebra EZA is generated by the A-elliptic multiple zeta values. One
of the main working hypotheses is that the only relations between these generators are
given by the shuffle and Fay relations. Building on this hypothesis, we define the length
filtration L(EZA), and study the numbers Dell

k,n := Ln(EZA
k )/Ln−1(EZA

k ). For n ≤ 2, we
prove an explicit formula, and for n = 3, we obtain partial results. These results confirm
our working hypothesis in lengths n ≤ 3.
We show that the algebra of elliptic multiple zeta values embeds into an algebra of non-
commutative polynomials in variables e2k, for k ≥ 0, and we prove results which specify
the image of this embedding.
We study the generating series of elliptic multiple zeta values, known as the elliptic KZB
associator. More precisely, we compute the image of the elliptic KZB associator in the
meta-abelian quotient of a free Lie algebra on two generators, and show that this image
is related to period polynomials of Eisenstein series.
We show that elliptic multiple zeta values occur in string theory computations. More
precisely, we show that the open superstring amplitude at one-loop level can be expressed
in terms of elliptic multiple zeta values.
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Erklärung zum Eigenanteil

Die Inhalte von Appendix C und D meiner Dissertation "Elliptic multiple zeta values" sind
veröffentlichte Artikel, die in gemeinsamer Arbeit entstanden.

i) Elliptic multiple zeta values and one-loop open superstring amplitudes ([13])
Zusammenarbeit mit: Johannes Broedel, Carlos Mafra und Oliver Schlotterer
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Amplituden auszudrücken und weiter zu studieren. Ziel der gemeinsamen Arbeit [13] war
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Ein großer Teil des dritten Abschnitts von [13] wurde von mir geschrieben, und ich habe
im ganzen Artikel viele mathematische Anregungen und Vorschläge gemacht. Gerade der
Bezug zur Physik und die konkreten Berechnungen zur String Amplitude in [13] wären
aber ohne die Expertise von Broedel, Mafra und Schlotterer nicht möglich gewesen.

ii) Elliptic multiple zeta values and a special derivation algebra ([14])
Zusammenarbeit mit: Johannes Broedel und Oliver Schlotterer
Die Idee für diese Arbeit enstand in gemeinsamen Diskussionen mit Broedel, Mafra und
Schlotterer bei einem Besuch in Cambridge im Februar 2015. Ziel war es gewisse Struk-
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konzipiert, und dann in gemeinsamer Arbeit implementiert und erweitert. Das Auf-
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