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ABSTRACT. These are expanded lecture notes for a course aimed at graduate
students given in February 2019 at ETH Zurich as part of the programme Modular
forms, periods and scattering amplitudes. They are intended as a concise first
introduction to periods of modular forms in a manner accessible to mathematicians
and physicists alike.

Warning for the reader: These are informal lecture notes, so beware of typos
and mistakes. If you find any, please let me know under:

nils.matthes@maths.ox.ac.uk.
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1. INTRODUCTION

1.1. Motivation. Many special functions which initially are defined on subsets of
the real line R can be extended to holomorphic functions on the complex plane
C. Besides trivial examples such as polynomials, the best known example is ar-
guably the exponential function z ~— exp(z) = > o7 =:. Other functions such as
the Gamma function I'(s) = [;~ e #*"'d¢ or the Riemann zeta function ((s) =
Yoo, n~® can at least be extended meromorphically, i.e. they extend to holomor-
phic functions outside certain discrete sets of poles. In fact both functions only have
simples poles and there are explicit formulas for the corresponding residues.
The situation is completely different for the real logarithm
t
log(t) := d_:c) t >0,

Lo
which cannot be extended to a meromorphic function on C. This is a consequence
of Cauchy’s integral formula

— = 271,

crox

where oy is any loop which winds once around 0 in the positive direction. Indeed, if
there were a continuous function F': C* — C such that dF' = %, then the integral
of % along any closed loop would have to vanish, by the fundamental theorem of
calculus.! Therefore, the number 27 (which is also called a monodromy period in
this context) provides an obstruction to existence of a primitive.

On the other hand, there do exist real analytic functions C* — C which restrict
to the real logarithm on (0, c0). Among all such extensions, the function z + log ||
is singled out as the solution to the differential equation

dF:Re(%>:1(%+d—_z).
z 2\ z zZ

Intuitively, log |z| = Re(log(z)) is well-defined because the period 27i of the loga-
rithm is purely imaginary and can therefore be eliminated by taking the real part.

10n the other hand, log(z) can be defined as an analytic function on the half-cut plane C\ (—o0, 0]
or more generally on any open subset U C C\ {0} which is simply connected.
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1.2. Goals and scope. The goal of these lecture notes is to study an analogous
picture for modular forms in the simplest case of forms for SLy(Z). More precisely,
we will introduce periods of modular forms which will be analogues of the number
2mi arising as monodromy of the logarithm. These are very rich objects for which
there exists a whole theory, Eichler—Shimura—Manin theory, and we do not attempt
to give a systematic account. Instead, we will content ourselves with a few key
results. One of our main points here is that the study of periods of modular forms
has concrete implications for modular forms themselves.

Having studied periods of modular forms to some extent, we turn to the con-
struction of modular invariant primitives of modular forms, i.e. the analogues of the
function z — log|z|. Again, the presence of periods implies that these primitives
will have to live in a subspace of real analytic rather than holomorphic functions.
Moreover, in these notes, we only describe the construction of modular primitives of
Eisenstein series in which case the corresponding primitives turn out to be variants
of classical real analytic Eisenstein series. On the other hand, the construction of
modular primitives of cusp forms is much more involved, both conceptually and
technically. It was achieved only recently, [6], and we only briefly sketch some of
their main interesting properties towards the very end of these notes.

1.3. Contents. Section 1 provides a quick review of modular forms for SLy(Z).
Many basic statements are given but proofs have been relegated to the literature.
In Section 2, we define periods of modular forms and study their relation to L-
series. One of the main results on periods is given in Section 4, the Eichler-Shimura
theorem which characterizes modular forms algebraically in terms of the associated
period polynomials. The Rankin—Selberg method forms the core of Section 4 in
which we also give an application of the theory developed so far to the structure
of spaces of modular forms. In Section 5 we construct modular invariant primitives
of Eisenstein series and relate them to real analytic Eisenstein series. We end by
giving some idea how to go about the construction of modular invariant primitives
for cusp forms.

Finally, there are two appendices. The first one presents a classical and quite
powerful method for computing the Fourier expansions of Eisenstein series, namely
the Poisson summation formula. In the second appendix, and with the intention
of guiding the reader towards modular forms for more general groups, we rephrase
parts of the theory of periods for modular forms in terms of group cohomology.

Acknowledgements Very many thanks to Giovanni Felder for the invitation to
give these lectures and to all of its participants for the congenial and stimulating
atmosphere in which they were given. It is the author’s pleasure to acknowledge
the huge intellectual debt these notes owe to the writings of Francis Brown and Don
Zagier about modular forms and their periods. The author would also like to thank
Deepak Kamlesh for corrections.

2. QUICK REVIEW OF MODULAR FORMS FOR SLy(Z)

We begin by recalling the definition of modular form and of some basic results.
We then discuss two extra structures on the space of modular forms, namely the
Petersson inner product and the action of a commuting family of endomorphisms,
the Hecke operators. For more extensive introductions, see for example [15, Ch.
VII] and [22].
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2.1. The notion of modular form. Before defining modular forms, we need to
set up some basic notation. A key role is played by the group SLs(Z) of integer 2 x 2
matrices with unit determinant or rather its action on the extended complex plane
C U {oo} via Mobius transformations,

SLa(Z) x 9 — 9, (7,2) = y.2 = Zi_;, where v = (Z Z) .
Clearly v gives the identity transformation if and only if v = £ where I € SLy(Z)
is the identity matrix. Moreover, one can show that SLy(7Z) is generated by the two
matrices T = (1) and S = (? ') whose associated Mobius transformations are
the translation z — z 4+ 1 and the inversion z — —1/z respectively.
Now let $ = {z € C| Im(z) > 0} of complex numbers with positive imaginary
part. Since Im(y.2) = Im(z)/|cz + d|* for all v € SLy(Z), the action of SLy(Z)
stabilizes §, and a fundamental domain for this action is given by the set

F={z€C||Re(2) < 1/2, |o| > 1}.

By the latter we mean that for every point z € $) there exists v € SLy(Z) such that
7.z € F, the closure of F in $, and if 71.2, V2.2 € § for v, # 79, then z € OF the
boundary of F.

We can now give the definition of modular forms.

Definition 2.1. A modular form of weight k € Z for SLy(Z) is a holomorphic
function f : $ — C which satisfies

b

(1) f (Zi;’) — (cz+d)}f(2), for all <‘C‘ d) € SLa(Z),

and such that f(z 4 iy) is bounded as y — co. We say that f is a cusp form if
lim, o f(z +iy) = 0.

Before proceeding with examples, we record two consequences of the definition.
Firstly, applying (1) with v = —I we see that f(z) = (=1)*f(2), so that every
modular form of odd weight is identically zero. Secondly, by applying (1) with
v =T has a Fourier expansion

f(z) = Z anq", where ¢ = e?™,

nez
and the boundedness condition implies that a,, = 0 for all n < 0. Also, note that f
is a cusp form if and only if ay = 0.
2.2. Examples of modular forms.
(i) For an integer k > 3, consider the Eisenstein series

E-1) — 1
Grlz) = (2(2m‘))k 2 (mz + n)F’

(m,n)€Z?

where ’ indicates that m = n = 0 is omitted from the summation. It is a
modular form of weight &£ which vanishes identically if k is odd. For even
weight 2k, its Fourier expansion is given by

Boy,

Gar(2) = Tk + Z oar-1(n)q",
n=1
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where B, are the Bernoulli numbers and oy(n) = 3, d.
(ii) Define the discriminant function A to be

o0
Alz)=gq H(l —¢")*, where as before ¢ = e*™"*.
n=1
This is a cusp form of weight 12 whose Fourier expansion is written as

Alz) =) 7(n)q".
n=1
From the definition of A(z), one sees that the coefficients 7(n) are integers,
and the function Z — Z, n — 7(n) is known as Ramanugjan’s tau-function.

(k=1)!
2(27i)F
in the definition of Gy. The significance of this will become clearer later when we

discuss the action of Hecke operators.

Note that in both examples we have a; = 1 which was the reason for including

2.3. Growth of Fourier coefficients. It is not hard to see that the Fourier coef-
ficients a,, = ogr_1(n) of Eisenstein series are bounded by

n*1 <a, < ((2k — 1)n*1

In particular, there exists a constant C' such that |a,| < Cn?*~! for all n, and this
bound is optimal. There are similar bounds for Fourier coefficients of cusp forms,
however these grow much slower.

Proposition 2.2 (Hecke). Let f(2) = > "7, a,q" be a cusp form of weight k. Then

n=1
there exists a real number C > 0 such that |a,| < Cn*/? for all n.

Proof. See [15], VII1.4.3, Proposition 9 and Theorem 5, or [22], 2.B, Theorem 4.(i).
]

The above estimate for Fourier coefficients of cusp forms of weight k is not optimal.
In fact, we know that |a,| < oo(n)n*~1/2 for every n which implies in particular
that |a,| = O(n*=1/2%¢) for every ¢ > 0. However, this better bound lies much
deeper; it was proved by Deligne as a consequence of his proof of the analogue of
the Riemann hypothesis for varieties over finite fields.

2.4. Dimension formulas.

Theorem 2.3. Let My be the C-vector space of modular forms of weight k.
(i) We have My, = {0} if k <0 or k is odd, and if k > 0 is even, then

dim g, — 4Ll k=2 mod12
| £]+1, k#2 mod 12.

(ii) A basis for My is given by the set {G4(2)"Gg¢(2)" |4m + 6n = k}.
Proof. See [15], VI1.3.2, Theorem 4 and Corollary 2. O

The fact that the dimensions of the space of modular forms of a given weight
are known explicitly is useful for proving identities between modular forms and
leads to the following result, known as Sturm bound, [17]. Given modular forms
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[, g € M}, with Fourier expansions f = > ja,q", g => . b,q", if a; = b; for all
0 <i<k/12, then f = g. For example, the identity

A(2) = 8000 - G4(2)? — 147 - Gg(2)2.

can be verified by showing that the zeroth and first Fourier coefficients of both sides
are equal.

2.5. The Petersson inner product. The space of cusp forms of weight k is en-
dowed with a non-degenerate, positive, Hermitian inner product as follows.

Definition 2.4. Given two modular forms f,g € Mj such that at least one of f
and ¢ is cuspidal, define their Petersson inner product {f,g) to be

(f,g) = //f Dy,

This is Well—deﬁned because firstly the integrand is SLy(Z)-invariant, and secondly
the integral converges since the integrand decays exponentially fast as y — oo,
because at least one of f or g is a cusp form.

We will see later that the Petersson inner product can be extended naturally to
a non-degenerate and Hermitian (but not always positive definite) inner product on
M.

dmdy

where dy =

2.6. Hecke operators. The space M}, carries an action of a certain family of linear
operators {T'(n) : My — My},>1, the Hecke operators. Their action on the Fourier
expansion of a modular form >~ a,¢g™ of weight k is given by?

n)f = Zamqm, where a,, = Z dr lamn.
m=0

d|(m,n)

Since clearly ag = 0 if a,, = 0, the Hecke operators map cusp forms to cusp forms.
Now let Hce C End(M,) be the Hecke algebra, i.e. the C-subalgebra generated by
the Hecke operators. The key result is the following.

Theorem 2.5. The action of Hce on My, is diagonalizable. Equivalently, there exists
a basis of My, consisting of simultaneous eigenforms of the T'(n).

Proof. See [22], 2.B, Theorem 2. |

The proof of this theorem consists of two steps. First, one proves that the Hecke
operators are self-adjoint with respect to the Petersson inner product:

(T(n)f,g) = ([, T(n)g), forall f,ge€ M.

In particular, every T'(n) is diagonalizable. Secondly, one proves that the Hecke
operators commute with each other, T'(m)T'(n) = T'(n)T(m), and now invokes the
familiar result from linear algebra that a family of diagonalizable operators which
pairwise commute is simultaneously diagonalizable.

The following proposition gives a more precise statement about the algebraic
structure of the Hecke algebra.

2We should stress that this is not the natural definition of Hecke operators, for example it is
not at all clear that T'(n) f is again a modular form of weight k. See for example [15, VIL.5] for the
“correct” definition.
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Proposition 2.6. The Hecke operators in weight k, T(n) : My — My, satisfy the
following relations:

T(mn) =T(m)T'(n), (m,n) =1
T =TETE") - "' TE""), n>1, p prime.
In particular, the Hecke algebra is generated by the set {T'(p) |p prime}.
Proof. See [15], VIL5.1, Proposition 10, or [22], 2.B, Theorem 1.(ii). d

Here are some important consequences of the results so far.

(i) For every k, the space M}, has a basis consisting of simultaneous eigenforms
for the Hecke operators, called Hecke eigenforms. If f =>"°_ a,,¢™ is such
an eigenform with eigenvalues {A(n)},>1, then

a, = A(n)ay, for all n.

It follows that the set of normalized Hecke eigenforms (i.e. eigenforms satis-
fying a; = 1) of weight k is a basis of Mj.

(ii) The Hecke eigenvalues {A(n)} of a given Hecke eigenform are real numbers,
in fact real algebraic numbers (see [22], 2.B, Theorem 3), and satisfy the
relations

A(mn) = A(m)A(n), (m,n) =1
AP = AP)A@") =" AP, n > 1, p prime.

In particular, by (i) above, the Fourier coefficients of a normalized Hecke
eigenform are real algebraic numbers and satisfy the same recursive relations.

Example 2.7. Both G, and A are normalized Hecke eigenforms of weights & and
12 respectively.

3. PERIODS OF MODULAR FORMS

In this section we introduce the periods of a modular form f and relate them
to critical values of the L-series associated to f. In the case of Eisenstein series,
the L-series in question is a product of Riemann zeta functions and we retrieve
expressions for odd zeta values in terms of rapidly convergent Lambert series, first
found by Ramanujan. The classical reference is [13], but our treatment is closer to

[3].

3.1. Differential forms associated to modular forms. We begin by associating
to a modular form f an SLy(Z)-invariant differential form f. To achieve this we
need to introduce a suitable module of coefficients. Namely, for k > 2, let V}, =
Do<rcro QX ny#=2-7 he the Q-vector space of homogeneous polynomials of degree
k — 2. The group SLy(Z) acts on Vj, on the right by

b

P(X,Y)|, == P(aX +bY,cX +dY), fory= (CC‘ .

> € Sly(Z), P(X,Y) € V4.
Definition 3.1. For a modular form f € My, define

f(z) = @2ri) " f(2)(X — 2Y)*?dz € QN(H) ®@ Vi,
where Ql(f)) denotes the space of holomorphic one-forms on ).

Proposition 3.2. We have f(v.2)|, = f(z), for all v € SLy(Z).
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Proof. Let v € SLy(Z). The following transformation formulas are easily verified,
(X =742V 2y = (cz +d) "X — 2Y)F 2 dy.z = (cz +d)2dz.
Using in addition that f is a modular form of weight k, we get
Fr2)ly = @ri) = f(y.2)(X = 7.2Y) P dy .2

(cz + d)*
(cz+ d)*

(2mi )"

= [(2).
Since v € SLy(Z) was arbitrary, the result follows. O

F()(X — 2Y)*2dz

3.2. Period polynomials of cusp forms. Having constructed modular invariant
differential one-forms associated to modular forms, we now define the analogues of
2mi, restricting ourselves to cusp forms first.

Definition 3.3. Given a cusp form f € Sy, define its period polynomial to be

(3) PAX,Y) = / f(z) e Vi ®C.
0
We also denote by
1
P;E(Xa Y) = §(Pf(X7 Y) + Pf(_Xa Y))

the even/odd part with respect to the involution X — —X.

Convergence of the integral in (3) is ensured by f(z) = O(e*™) as z — ico and

f(2) = O(e™®™/*) as z — 0 since f is a cusp form. Note that both conditions fail
for the differential forms associated to Eisenstein series; in fact the corresponding
integral (3) in fact diverges, but can be regularized (see Proposition 3.7).

Now expanding the term (X — zY)¥~2 in the integrand of (3), one gets

Py(X,Y) = (2mi)"* igé {(—1)” (k ; 2) Om (z)z”dz] Xh-2mnym,

100

and the complex number p,(f) = [, f(2)z"dz is what’s usually called in the
literature the n-th period f.

Remark 3.4. The prefactor (27i)%~! is omitted in many classical treatments of
period polynomials and is included here following [3]. For the reader familiar with
the general theory of periods, we mention that its purpose is to render the coefficients
of Pr(X,Y) effective periods, i.e. having non-negative weights, [12].
Example 3.5. For the cusp form A, we have
36 36
PI(X,Y)=wl [ ==X" - X®Y? + 3X°V* - 3X1Y0 + X?YV® — —
691 691
Py(X)Y) = wy (4X°Y — 25X7Y? 4+ 42X°Y° — 25X°YT +4XY7)
for certain numbers w{ € R, wx € iR which can in principle be computed explicitly
to any given accuracy. Up to eleven digits of precision, we have, [6],

wk = —68916772.809595194754 ..., w,x = —i X 5585015.3793104018668 . . . .
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In general, Manin (see for example [13]) proved that the period polynomial of any
cuspidal normalized Hecke eigenform has the form

Pr(X)Y) =w;Qf (X,Y) +w; Qf (X,Y),

for some numbers w;f € R, w; € iR and the polynomials Qf(X ,Y') have coefficients
in Q(f), the number field generated by the Hecke eigenvalues (=Fourier coefficients)
of f. It is conjectured that the numbers w]jf are transcendental (in fact, algebraically
independent over Q) but this is not known in a single example.

3.3. L-series of modular forms and the Mellin transform. The periods p,(f)
of the modular form f are closely related to special values of its L-series, defined as
a formal series by

L(f,S) = Ea

n=1

Qn

seC

The growth properties of the coefficients a,, (see Proposition 2.2) imply that L(f, s)
converges absolutely and locally uniformly if Re(s) > k and even for Re(s) > £ +1
if f is cuspidal. Therefore, L(f,s) defines an analytic function in some half plane of
C.

The relationship to periods is furnished by the following well-known formula which
is an example of the Mellin transform.

Proposition 3.6. For f € Sy, we have

| st = en T
0
for all s in the region of convergence of L(f,s).

Proof. Replacing f(z) by its Fourier expansion y ~  a,q" and interchanging sum-
mation and integration (which is okay since the series > 7 | a,e *™" converges uni-
formly on (0, 00)), we get

i)t = ane M At =) a, [ e ldE
i
0 0 =1 n=1 0
=(2n)"° f: o /00 ettt
n=1 ne 0

= (2m)°T(s) L(f, s).
0

This important proposition has the following consequences.
(i) The function s — L*(f,s) := (2m)~°I'(s)L(f,s) has analytic continuation
to the entire complex plane, and satisfies the functional equation L*(f,s) =
(=1)2L*(f,k — s). The function L*(f, s) is called the completed L-function

of f.
(ii) The periods of f are, up to a power of ¢, equal to the special values of L*(f, s)
at the critical points s =1,..., k — 1, more precisely

pu(f) =" 'L (fin+1), 0<n<k—2
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So far, we have restricted our consideration to cusp forms. However, the case of
Eisenstein series, while being technically slightly more involved, is also important.
First of all, in that case the L-series in question is a product of Riemann zeta
functions,

L«%¢>:§:9%§Q:g@x@—k+1y

Since ((s) has a simple pole at s = 1, it is already clear that L(f, s) has meromorphic
rather than analytic continuation. However, exactly as before one proves that

/OOO(Gk(it) —ao(Gp))t* 7 dt = (2m)°T(s)L(Gy, s), if Re(s) > k,

where ao(Gy) = —g—g is the constant term in the Fourier expansion of Gj. The
difference to the case of cusp forms is that the integral on the left may diverge
if Re(s) < k but can be regularized as follows. As before, we let L*(Gg,s) =

(2m)~*T'(s) L(G, $).

Proposition 3.7. For every tyg > 0, we have

L*(Gy,s) = /t:o(Gk(it) —ag(Gp))t* 1 dt + /Oto (Gk(z’t) — %) 51t
_%@0E+Z?Q,QHM@>E

Proof. A simple calculation using the fundamental theorem of calculus shows that
d/dty of the right hand side vanishes and therefore does not depend on t,. But for
Re(s) > k, the limit as to — 0 exists and equals L*(Gy, s) as we’ve seen above, and
the result follows. O

The gain is now that the right hand side is well-defined for every s € C (the
second integral converges for every s because Gy (it) — (it)*ao(Gy) = O(e?/?), as
t — 0). In fact, setting to = 1 and using modularity of Gy, we get

1

o k
(4) L*(Grs) = / (Gilit) — ao(G) (" + 55 )dt — ag(Gh) Fw_]

Therefore, the function s — L*(f,s) has meromorphic continuation to the entire
complex plane having simple poles at s = 0 and s = k with residues —ag(Gy) and

(—1)2ao(Gy) respectively, and one can verify that it also satisfies the functional
equation L*(f,s) = (=1)*2L*(f, k — s)

A very interesting feature is that equation (4) gives rise to rapidly convergent
formulas for odd zeta values ((k — 1) which were first stated without proof by
Ramanujan. We only give the result for & = 4, the generalization to £k =0 mod 4
being straightforward while the case £ = 2 mod 4 requires only slightly more work,

12].

Proposition 3.8. We have
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For the proof, we need the following lemma which is easily proved by differenti-
ating both sides £ — 1 times with respect to ¢.

Lemma 3.9. For every k > 4, we have

(275’“‘1 2 o = - 2)! /t T (Gulit) — ag(GO)(E — 12

where o1 (1) = 341, -

Proof of Proposition 3.8. Applying the preceding lemma for £ = 4 gives

2 > —2mnt __ > </ / 2 14/
W;M(n)e _/t (G4(it") — ao(Gy))(t' — t)2dt’.
For t = 1, the right hand side equals
o 1
/ (Ga(it") — ag(Gy))(#? — 2/ + 1)dt' = L*(Gy,3) — L*(Gy4,2) + gao(G4),
1

by (4), while the left hand side, again for ¢t = 1, equals

) e 6727rmn 9 > 1
(2m)3 m’;ﬂ nd  (27m)3 ; n3(e?m — 1)
The statement now follows from the equalities
C(?)) 1 CLO<G4) 1
L*(G4,3) = — L*(G4,2) = —— = —.
(G1,3) (273’ (G1,2) = =555 3 720

O

3.4. A digression on Euler products. The L-series of modular forms should be
thought of as relatives of the Riemann zeta function ((s) = > 2 n~°. A very
important property of the latter is existence of an Euler product

() =JJ(a=p)" if Re(s) > 1.
P
where the product is over all prime numbers p. This formula is equivalent to a
purely arithmetic statement, namely the unique factorization of positive integers
into prime numbers.

Now for a general modular form, there is no reason to expect existence of a
similar Euler product. In fact, it turns out that existence of an Euler product is
deeply interrelated with the action of Hecke operators, as witnessed by the following
result.

Proposition 3.10. Let f = > a,q" be a modular form of weight k. Then the
associated L-series L(f,s) has an Euler product

(5) L(f.s) = [[ — a + 9,

p

if and only if f is a normalized Hecke eigenform, (5) being valid for all s in the
region of convergence, where again the product is taken over all prime numbers p.

Proof. See for example [8], Theorem 5.9.2. O
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The point is that by expanding all factors in the Euler product as geometric
series, one obtains precisely the recurrence relations satisfied by the coefficients of
normalized Hecke eigenforms, (2).

An important consequence is that L-series of normalized Hecke eigenforms are
nonzero in the region of convergence. In particular L(f,s) # 0 for all Re(s) >
(k+1)/2, and by the functional equation, likewise for Re(s) < (k —1)/2, except for
“trivial zeros” at negative integers s € {—1,—2,...} which come from the poles of
['(s). In particular, the periods po(f),p1(f),.-.,pr—2(f) of a Hecke eigencusp form
f of weight k are all nonzero except for possibly py/2—1(f) which corresponds to the
“central L-value” L(f,k/2).

Remark 3.11. The region (kK —1)/2 < Re(s) < (k + 1)/2 for which functional
equation together with Euler product does not make any predictions about nonva-
nishing is called the critical strip, in analogy with the critical line Re(s) = 1/2 of
the Riemann zeta function. Indeed, note that L(f, k/2) = 0 if kK = 2 mod 4 since
the sign (—1)%/2 in the functional equation is then odd.

3.5. Why the name “periods of modular forms”? We now explain why the
periods of modular forms can be considered analogues of 2.
Recall that by virtue of Cauchy’s integral formula the number 27 arises as the
monodromy-period of the logarithm:
dz

21 = ,

O'()Z

where o( is a loop winding once around zero in the positive direction. Choosing
1 € C* as our base point and pulling the integral back along the universal cover
@ : C — C*, €+ €%, this is equivalent to

271
21 = / d¢,
0

because d§ = ¢* (df) In other words, 27 is equal to an integral of the natural one-
form d¢ on C between two points in the fiber o~!(1). Moreover, for any a,b € ¢ 1(1),
we have f; d¢ € 2miZ.

Now the modular analogue of the universal cover C — C* is the natural projection

¥ H* — SLe(Z)\H",

where H* := U}P’b is the extended upper half-plane obtained by adding all rational
points on the real line including the point “at infinity” ioco (or [1 : 0] in projective
coordinates), and the action of SLy(Z) on }P’é is given by 7.[po : p1] = [apo + bp :
cpo + dp], for v = (2}) € SLy(Z). Note that SLy(Z)\Pg = {[1 : 0]} and therefore
Y~ (ico) = Pg.

By definition the period polynomial of f is obtained by integrating the SLo(Z)-
invariant differential f between the points 0 and 200,

[ s
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More generally, one can show that for any Q)1,Qs € I%, there exists v € Z[SLy(Z)]

(the group ring), such that
Q2 100
foe=U Y
1 0

Pr(X)Y)

7

where the first integral is taken along a geodesic between (1 and ()5 in $*. Therefore,
the coefficients of fgl ° [ are Z-linear combinations of the coefficients of Pr(X,Y’).
Rather than proving this last fact, which is a well-known result in the theory of
so-called modular symbols, [13], we give an example which will make the general
pattern clear.

Example 3.12. Assume that Q1 = [3 : 5], Q2 = [2 : 5] which correspond to the
points 3/5,2/5 € Q. For any cusp form f, we have

=)

since S.(3/5) = 5/3, S.(2/5) = 5/2 and f is SLy(Z)-invariant. The same argument
applied to T? = (| #) gives

[ ([s)

Now we simply split the integral

Lot L [e

and apply the preceding argument now again with S in both integrals separately.

We get
Lo e () ()

Finally, we apply the same argument as before with 75 in the first integrand and
with 772 in the second, also reverting the integration domain, to obtain

[ o= (9] -

Putting together everything we’ve done so far, we see that

[F=([)

with v = (T3 — T72)S™'T25"! € Z[SLy(Z)).

)

Sfl

T2,

S— S-1

T-3 T2
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4. THE EICHLER—-SHIMURA THEOREM

In the preceding section we introduced the period polynomial P¢(X,Y’) € Vj, of a
cusp form f and showed that its coefficients are, up to elementary factors, the values
of the completed L-function L(f,s) of f at the “critical points” s € {1,... .k — 1}
where k is the weight of f.

In this section we will see that period polynomials satisfy two functional equations,
the period relations, which reflect their origin as integrals of modular forms. As a
second result, we will see that the subspace of V consisting of period polynomials
can be characterized using the period relations.

4.1. The period relations. We being by remarking that the group SLy(Z), which
we already know is generated by S = (U ') and T'= (} 1), is also generated by S
and U =TS = (] 1) As S? =U? = —1I, (I =2 x 2 identity matrix) this shows
that SLo(Z) is in fact generated by two elements of finite order.

Now let f be a cusp form with associated period polynomial Pr(X,Y").

Proposition 4.1. The polynomial P;(X,Y") satisfies the period relations

Pf(X7Y> +Pf<_Y7X) = 07
PrX,Y) + Py(X —Y,X)+ Pj(~Y, X —Y) =0.

Equivalently,
Pr(X,Y)|(1+5) =0,
Py X, Y)|(1+U+U? =0,

where the right-action (v, P) — P(X,Y)|y has been extended linearly to the group
ring Z[SLa(Z)].

Proof. Using invariance f(v.2)|, = f and composition of paths, we have

rociaes) = [Coe ([T e)is= ([T [ 2
(L)

0.

e ([ v

2

(L)
(
0

Similarly,

P (X W1 +U+U?) = /mi+
0

VR
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4.2. The Eichler—Shimura isomorphism. Now consider for even k > 2 the sub-
space
Wi ={P(X,Y) € Vi | P(X,Y)|(1+S) = P¢(X,Y)|(1+ U + U?) = 0}
of polynomials satisfying the period relations. This space is stable under the action of

the element € = (§ %) € GLy(Z) by conjugation, and therefore we may decompose
W) into its £1-eigenspace under this action

Wy =W oW, .
This amounts to saying that if P(X,Y") € V} satisfies the period relations, then so
do the two polynomials PE(X,Y) = L(P(X,Y) £ P(X,-Y)) € V.
Theorem 4.2 (Eichler-Shimura). The period maps
VS =W ®C,  fe PR(XY)

are both injective. Moreover, ¥~ induces a C-linear isomorphism S = W,” @ C

while Im(y*) € W,F @ C is a codimension one subspace not containing the element
Xk72 _ Yk72‘

Sketch of proof. Given two cusp forms f, g € Sk, it is a result of Haberland (see [22])
that

(o=, k-2 P ()pn(9)-

minl(k —2 —m —n)
m+n<k—2
m#Zn mod 2

Therefore, if all even (respectively all odd) periods of f vanish, then (f, f) = 0,
hence f = 0 since the Petersson inner product is non-degenerate. This shows that
the maps ©* are both injective.

The fact that ¢~ is an isomorphism onto W, and that Im(¢*) has codimension
one in W," are equivalent to the dimension formulas

dim W,j =dim Sy +1 =dim M, dim W, = dim Sy,
which can be proved using invariant theory. For details, see [21]. 0

The upshot of the preceding theorem is that firstly, every cusp form f is uniquely
determined by either its even periods po(f),p2(f),...,pr—2(f) or its odd periods
p1(f)yp3(f), ..., pe—3(f). Secondly, at least after tensoring with C, the space of
period polynomials admits a purely combinatorial description of solutions to the
period relations (there is one extra linear equation which characterizes Im(¢*) inside
of W1, see [11]).

5. THE RANKIN-SELBERG METHOD

In this section we will relate periods of a Hecke eigencusp form to the Peters-
son inner product of f with a product of Eisenstein series which uses a technique
introduced independently by Rankin and Selberg. The core of the method is the
characteristic “unfolding trick” which reduces an integral over a fundamental domain
for SLy(Z) to a simpler one.

We then give a concrete application to demonstrate that the formalism of periods
of modular forms developed so far is useful even if one is only interested in modular
forms.
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5.1. Real analytic Eisenstein series as integration kernels. In this section,
we denote I' = SLy(Z) and 'y = (—1,T) C I'. Then I'y, is precisely the stabilizer
of the cusp ico. Further we denote by I'.,\I' the set of right cosets of I'y, in T

Definition 5.1. For a non-negative integer £ > 0 and s € C with Re(s) > —k/2+1,
define the real analytic Eisenstein series of weight k to be

S

o y
Gil2) (**)z; . (cz + d)klez +dJ*s

The assumption on s ensures absolute and locally uniform convergence of the
above series, and therefore Gi(z) defines a real analytic function of z.

For k > 4, the real analytic Eisenstein series G;(2) is related to the usual Eisenstein
series Gi(z) by

oy 1 1 %
Gile) = QC(k)(m%W (mz+n)* By Cil)

Also, one verifies that for every s as above, the function G; transforms like a modular
form of weight k:

Gi(v.2) = (cz + d)*Gi(z), forall y €.

One of the main reasons for considering real analytic Eisenstein series is that they
define suitable integration kernels (via the Petersson inner product) which can be
used to extract arithmetic information out of modular forms. The basic result is the
following.

Theorem 5.2 (Rankin—Selberg). Let h, h’ be positive even integers, and k = h+h'.
Given f =3 anq" € Sy and g = >~ b,q" € My, we have

5 D(k—1+5) <= anb,
{(f,91-9) = (d4m)—1+s Z h—1ts’

n=1

for Re(s) > h' +1—k/2.

The series on the right is the convolution L-series of f and ¢g and is sometimes
denoted L(f x g,5") (here s =k — 1+ s).

dxgy)

Proof. By definition, we have (with du = ;

P Y ptaay f(2)g(2) K
1G9 = [ feGEE = [ 3 i
cZ + d)Mecz + d|?*
o S N
Using the modular transformation properties of f,g and y = Im(z), as well as
invariance of du, the last line equals

/F . > f(r2)g(v.2) Im(y.2) oy dp.

YET o \I'

Now since I'y,\$H = Uyerm\FV(F \$) (union of disjoint sets up to sets of measure
zero), and since (0,1) x (0,00) is a fundamental domain for the action of I',, on $,
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we can rewrite the last integral as

/rm\ﬁf” T — / /f Jrs-dady

/ / Z A, 627rzm(x+zy)b 627rzn(w+zy)dl, yk—2+sdy

m>1
n>0

/ Zanb e 47rny k— 2+de

-1+ s) anby,
- (47T)k: 1+s Z nk—1ts’

n=1

where we used orthonormality fol emim=n)edy = §,, ., and in the last equality we in-
terchanged integration and summation, which is okay since the sum in the integrand
converges uniformly in y. O

5.2. Consequences. Some special cases of the Rankin—Selberg theorem are of par-
ticular interest. Here is a first one.

Theorem 5.3 (Addendum to Rankin—Selberg). With notation as in the previous

theorem, assume in addition that f € Sy is a normalized Hecke eigencusp form and
that g = Gy. Then

I'k—1+s)
(4m)k=1+sC(h + 2s)

<f7giSL'Gh/>: L(f7h+S>L<f7k_1+S>a

for all s as before.

Sketch of proof. This is more or less purely combinatorial, and can be deduced from
the following facts:

(i) Since f = > > a,q" is a normalized Hecke eigenform, its L-series has an
Euler product which looks as follows:

1 1
L pu— pu—
s 1;[ 1—app=* + pF=1=2 1;[ (1= agp=*)(L = app™)’

for some ), € C, where the product is over all primes.
(ii) If g = > 07 g™ € My is another normalized Hecke eigenform with Euler
product

1
L(g7s) = 1;[ (1 _ ﬁ;p_s)(l

then the convolution L-series L(f x g, ") :== >~ “;b," has an Euler product
given by

op0)

2+ -k=t)"T] 11 —aiadr )

p 1<17]<2

For a proof, see [7], Theorem 1.6.3.
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(iii) The Euler product of L(Gy,s) = ((s)((s — h' 4+ 1) is given by

1
I1 (1=p)(1—ph=1=s)’

p

: 1_ 2 _ W1
Le. ap, =1, a, =p" .

Using these facts, we get from Theorem 5.2 for g = Gy
[(s") o= anby

SG N = §
<f7 gh h > (471’)5/ ns/

n=1

=C(2(s +1)—k—H)" H H 7

1<z]<2 p
= (2" +1) =k =h)" 1L(f,S) (f,s —h'+1)

where we also used that the Fourier coefficients of GGj, are rational numbers, in
particular real. Now setting s’ = k — 1 + s gives the result. O

Corollary 5.4. For h,h' > 4 even, f € S, a normalized Hecke eigencusp form, we
have

(f, GhGl) = phfl(f>pk72(f)‘

(Qi)k—l
Proof. This follows from setting s = 0 in Theorem 5.3 and using the formulas
i"*in! By, (2mi)"
pa(f) :WL(f,nJrl)a C(h):—T(h22even)
and G)(z) = —é—’;Gh(z). O

This formula can be extended with slight extra care also to h = 2. The problem
is that (G5 is not a modular form, however, one can verify that for £ > 6 the linear
combination

Gl_(2)
dmi(k —2)’

called the Serre derivative of Gj_s, is a modular form of weight k. With this, one
can show that

GQ(Z)Gk_Q(Z) +

Gl p1(f)pe—2(f)
= =

so that Corollary 5.4 extends to h = 2 also.

5.3. Petersson inner product for all modular forms. As a final application
of the Rankin—Selberg method, we describe a natural extension of the Petersson
inner product to all modular forms following [19]. For this, we need that the real
analytic Eisenstein series of weight zero Gj(z) has meromorphic continuation to all
s € C with Res,—; Gj(z) = 2 for all z € §, [7]. Combined with the Rankin-Selberg
theorem, we get

m(k—1)!
3 (4m)k

(f.9) = 5 Res,a(£.Gig) = L(f x g.9)
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for all f € Sk and g € Mj. In particular, for f a normalized Hecke eigencusp form
and g = Gy, we get from Theorem 5.3

— 1) —

(f.g) = %(k 1)! Res._, (L(f, S)L(f,s — k+ 1)) ‘
(4m)k C(2(s—1+k))

Firstly this shows again that (f, G) = 0 for every (not necessarily normalized) Hecke

eigencusp form f since L(f, s) has analytic continuation. More importantly, the right

hand side makes sense for f = G}, also, and using that L(Gy, s) = ((s)((s — k + 1),

we may define

7 (k—1)! C(s)¢(s —k+1)%¢(s — 2k +2)

Gy, Gy) := ————— Res,= .
661 = 5 g Resms (G T

It is known that ((s) has simple pole at s = 1 with residue one, a simple zero at

s =2—k for k > 4 and that {'(2 — k) = ggf)_,f_)llé“(k —1). Using this, we get after a

short calculation

k—2)!'B

(k= 2)! B (k—1).

(4m)k=1 2k

Note that this is positive if and only if £ = 2 mod 4 so that the natural extension
of (-,-) to all of My, is in general not positive definite.

(G, Gy) =

5.4. A theorem of Rankin—Zagier. In this section we prove a result about the
structure of My, the space of modular forms of weight £ which could have already
been stated in Section 1. Its proof, however, will use much of the theory we set up so
far, including injectivity of the period map (a part of the Eichler—-Shimura theorem)
as well as the Rankin—Selberg method. To the best of the author’s knowledge, no
proof is known which avoids these two results.

Theorem 5.5. The space My, is C-linearly spanned by the set
Uk = {Gk, [Gh, Gh/] | h —|- h/ = k‘},

13 G,/ z 81 G (2
where [Gr, G (2) = Gi(2)Gio(2) + 7 (2252 4 i)
The expression |G}, G|, which for h, i’ > 4 is simply the product of G}, and Gy,
is a modular form of weight k& also known as the (0-th) Rankin—Cohen bracket of
G, and Gy (see for example [23], Section 5.2).

Remark 5.6. It is instructive to compare this theorem with the statement
My, = Spanc{G4G? | 4a + 6b = k},

which is a consequence of Theorem 2.3.(ii). In particular, a simple counting argu-
ment shows that U, cannot be a basis. On the other hand, a certain subset of U}, is
a basis of M, [10].

Proof. For k < 12, we have dim M, < 1, so that U, generates M, in these cases. We
may therefore assume that £ > 12.

Let g € Ui = {f € My |{f,h) = 0,Vh € U} be an element of the orthogonal
complement of Uy in M}, which we may write uniquely as g = g+ AGy, with g € Sy,
and A € C. Since G}, € Uy which is orthogonal to all cusp forms (see Section 5.4),
we have A = 0 and therefore g = ¢ is cuspidal.
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Now consider the C-linear map

”lb : Sk — Vki
n—1 k—2 m—1y n—1
Fo 3 () G
mjrn;k

By Rankin—Selberg (Corollary 5.4), for every Hecke-normalized eigenform f € Sk,
we have

o) = PP

Writing g = >, A\ f; as a C-linear combination of Hecke-normalized eigenforms f;,
we therefore have

0= 0le) = M) = L aPp(X,Y) = P2t

By Eichler-Shimura (Theorem 4.2), the Py, (X,Y)™ are linearly independent, so that
¢; = 0 for all 7. On the other hand, we have

i*=(k —2)!
o(fi) = ————L(fi,k—1) #0,
Pk Q(f) (27’[’)’671 (f )#
since L(f;, k — 1) has an Euler product expansion, all of whose factors are non-zero.
Therefore we must have \; = 0 for all ¢, that is g = 0. O

6. MODULAR INVARIANT PRIMITIVES OF MODULAR FORMS

In this section we construct analogues of the single-valued logarithm z — log |z|
for modular forms. For Eisenstein series this is done in detail and leads to the
real analytic Eisenstein series already encountered in conjunction with the Rankin—
Selberg method. On the other hand, the analogous construction for cusp forms is
significantly harder and is only indicated in the final subsection.

6.1. The logarithm, again. To motivate the contents of this section we again
return to our basic example the logarithm. For a point z € C*, let ~, : [0,1] — C*
be a path from 0 to z, i.e. 7.(0) = 1 and v,(1) = 2, and consider the line integral
f% 4z Now if 7, is another such path, then

(/ —/)d—xemz.
Yz Yz Z

Indeed, on the universal cover 7 : C — C*, £ — 2z = €* the preceding integral pulls

back to
2min
(/_/)d_:c:/ d¢é = 2min,
Yz iz T 0

where the integer n € Z (the winding number) counts the number of times the loop
7. o, goes around 0. In other words for fixed z the value f% df depends on the
choice of path ~, up to addition of an integer multiple of 27i.
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The point is now that since 27 is a purely imaginary number, the real part of
the integral f% d?x does in fact only depend on z and not on the path, and we have

Re </ d_x) = log|z|.
v X

Another way of characterizing the function C* — R, z + log |z| thus obtained is as
the unique solution to the differential equation

dF:Re(%>:l<%+¥>
z 2\ z Z

6.2. Monodromy of integrals of modular forms. We would like to mimick the
construction of the preceding section for integrals of modular forms, the latter being
defined as follows.

such that F(1) = 0.

Definition 6.1. Given a modular form f = > ja,¢" € M), and a point z € 9
define its indefinite integral to be

If(Z):/:OOiO_/OZiOO»

£ = (2mi) " ag(X — 2Y)F2dz, f) =f—f

where

It is helpful to think of f*° as the constant term of f. The point ico plays here
the role of a fixed canonical base point, analogous to 1 € C* in the case of the
logarithm.

Remark 6.2. In the definition above we have been slightly sloppy; the integrals are
defined as path integrals so we really should have chosen paths from z to ioco and
from 0 to z. However, it turns out that the above integrals are independent of the
choice of path, so we don’t need to specify them.

Clearly the function  — V, ® C, z + If(z) is a primitive of —f in the sense that
%[f(z) = —i.
Definition 6.3. We say that a function F' : $§ — Vi, ® C is modular invariant if
F(v.2)|y = F(2) for all v € SLy(Z).

It turns out that the I;(z) are not modular invariant. Indeed, for cusp forms,
we already know this since the following proposition will show that the defect is
precisely measured by the period polynomial of f and the latter is always nonzero
by the Eichler-Shimura theorem.

Proposition 6.4. If f € S; is a cusp form, then
Ii(T2)|T = Iy(2), I(z) = 1;(S.2)|S = P(X,Y),
where P¢(X,Y') is the period polynomial of f.

Proof. Since f is a cusp form, we have io = [, hence

[f(Z)Z/:OOL
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To see invariance under 7', note that T '.i00 = ioo and therefore

°° s | T = / Ty

since f is SLy(Z)-invariant, by Proposition 3.2.
For the second statement, using again SLo(Z)-invariance of the integrand and the
fact that S~1.ico = 0, we get

15(2) — (82| = /m /

which is precisely the definition of Pr(X,Y"). O

Since SLy(Z) is generated by S and T', the preceding proposition completely de-
termines the monodromy of the integrals I¢(z).

Similarly, we now compute the monodromy of integrals of Eisenstein series of
weight 2k > 4.

Proposition 6.5 (Haberland, [9], 1.4.). We have
(271.2')%—1 ng (X + Y)2k—1 _ X2k—1

IG2k (T’Z)‘T - [G2k (Z) = 2k' _ 1 4k Y )

2k — 2)!
62 (8.2 — T (5) = P22 (cm: 1) - X
1 p g
2 2k 1 2n2k—2n X 2n—ly2k—2n-1 |
i) Z 2n)1(2k — 2n)!
n=1
Proof. We begin with the transformation under T'. By definition, we have
100 100 T.z
N O A R e Ty e

z z
— o0 o0
= —/ Q2k+/ Gog
T-10 0
0
_ 00
= Gy,
—1

1
—(27ri)2’“_1a0(G2k)/ (X + 2Y)* 24z,
0

Computation of the final integral is straightforward and the result follows upon
noting that ag(Gax) = —22&.
For the transformation under S, a straightforward computation using equation 4

yields for z =i

Ia,, ()|S — Ig,, (i) = (2mi) % 2 (Qk —2

r=0
where we also used that S.i = i. Now since L*(Gag, s) = (2m)*I'(s)((s)((s—2k+1),
using the well-known formulas ((0) = —3, ((2k) = %ﬁ C(1—2k) = % as

well as ('(—2k) = @ng;—i , valid for all k> 1, we get the result.

> (—i)r+1L*(G2k, r 4 1)X2k—2—ryr’
r

O
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6.3. Modular invariant primitives of Eisenstein series. Having computed the
monodromy of the functions I;(z), we would somehow like to eliminate it to con-
struct modular invariant primitives. If f is an Eisenstein series, this can be done as
follows.

Definition 6.6. For k£ > 1, define

Eor(2) = (2mi) % Re (IG2k+2(z) + @C(Qk + 1)Y2k> :

Proposition 6.7. The function Eu(2) is modular invariant,

(6) ng(’YZ)|’}/ = ng(Z), fO?" all v E SLQ(Z)a

and satisfies the differential equation
(7)
dEa(2) = Re(2miGar2(2) (X —2Y)*d2) = miGaopo(2) (X —2Y)* de—miGaop0(2) (X —2Y ) dz.

In fact, &y is uniquely determined by (6) and (7) up to an additive constant, but
we will not prove this here.

Proof. The differential equation is clear from the definition of £y (z). For modular
invariance, it is enough to very this for v € {S,T}. To check this, we make use of
Proposition 6.5 and get

Eor(T.2)|T = (2mi) "% Re (IGM (T.2)|T + @c(% + 1)Y2k|T>
= (27i) % Re (IG%+2(2) + @g(zk + 1)Y2’“)
= 52k<2)

since the monodromy under 7" is purely imaginary and since T  acts trivially on Y.
Likewise, we get using Proposition 6.5

Eor(S.2)|S = (2mi) 2 Re <IG2k+2(S.z)|S + @g(zk + 1)Y2’“\S)

= (2mi)"** Re (]G2k+2(2> + @((zk + 1)V — X%y 4 @g(% + 1)X2k)
= 52k(z)
O

We view the function &y : $ — Voo ® C as the analogue for Eisenstein series
of the function z +— log |z|?. In the next section we will show that &y, is indeed the
natural choice of primitive by relating it to real analytic Eisenstein series.

Remark 6.8. The cohomological explanation for Proposition 6.7 is that the map
(2k)!

SLo(Z) — Vi ® C, v = Re(Igyyn (7-2)|7 — Ty, (2)) = S52Y |y is a coboundary,

i.e. its class in H'(SLy(Z), Vag12) vanishes. See Appendix B for more details.
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6.4. Relation to real analytic Eisenstein series.

Definition 6.9. For r,s > 0, define the real analytic Eisenstein series of weights
(r,s) and total weight w = r + s by

w! 1 / L
Sr s = - o — )
5(2) (2mi)w+2 2 Z (mz +n)rT(mz + n)s+!

(m,n)€Z2
where L := log |q| = —27y.

These functions are real analytic relatives of the holomorphic Eisenstein series
Gk(z). For the same reason as in the holomorphic case, we have &, =0 if r + s is
odd. Writing w = 2k, we have for r = s =k,

i (2k)
= E 1
Sk (2mi) R+ gk (ak+1)

, S . . . . . .
where E(z,5) = % g —2%— is the classical real analytic Eisenstein series
’ 2 (m,n)€Z? [mz+n[2s

introduced by Hecke.

Remark 6.10. In the terminology of [4], &.s(%) is a non-holomorphic modular
form of weights (r, s). This means that z — &, 5(2) is a real analytic function which
transforms under the action of SLy(Z) as

Ers(v.2) = (cz+d) (c2+d)°E, 5(2), forall y = (CCL Z) € SLy(Z).

Furthermore, there is also a growth condition as y = Im(z) — oo which can be
phrased as a condition on the Fourier expansion of £ (see [4], Section 2.1). In [4],
the space of non-holomorphic modular forms of weights (r, s) is denoted by M, ;.

Proposition 6.11. We have
El(z) = D E(2)(X —2Y)(X —2Y)".
r+s=2k

Therefore the real analytic Eisenstein series &, (z) of a fixed weight r + s = 2k
can be assembled into a modular invariant function z +— & (2) which solves the
differential equation (7) and which is equivalent to the following system of equations
for the &, 5(2)

0w = LG 2
06 s=(r+1)&E415-1, foralll<s<w

and
040 = LGyi2
557"75 =(s+1)& 1511, foralll<r<w

Here, 0 = @, 0p,0 = h. 0, denote the graded differential operators on non-
holomorphic modular forms, given in weights (r, s) by

0
&:(Z—E)&—I—T

— 9,
832(2—2)£+s.
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Remark 6.12. It is a general principle that properties of &y can be translated
into properties of its coefficients &, ; and vice versa. As another example, modular
invariance of &y, (6) is equivalent to &, s(z) being modular of weights (r, s), for all
r+ s = 2k. See [4], Proposition 7.2, for more precise statements.

Two further properties of real analytic Eisenstein series are worth mentioning.
Firstly, they are eigenfunctions

A& s = —2kE 5, 2k=1r+s
for the graded hyperbolic Laplacian A = @ns A, 5, given in weight (r, s) by

Ag=—0s10,+7(s—1)=—0,_105 + s(r — 1).

Secondly, the Fourier expansion of &, ; can be computed explicitly which prominently
features the odd Riemann zeta value ((2k + 1). See [4], Section 4.1-4.2.

6.5. Modular invariant primitives of cusp forms. So far we have constructed
modular primitives of Eisenstein series and related them to a well-known class of
functions, namely the real analytic Eisenstein series. The analogous construction
of modular invariant primitives of cusp forms is more elaborate and has some new
features. We only indicate some parts of the construction, and refer to the original
article [6] for full details.

Recall that, as explained in Remark 6.8, the key reason why the construction of
modular invariant primitives of Eisenstein series worked was that the monodromy
of Re(Ig,, ) was trivial in cohomology. The analogous result is false for cusp forms,
essentially by the Eichler—-Shimura theorem, and this is one reason why the con-
struction of modular invariant primitives in that case is more complicated.> Even
stronger, for every cusp form f € S, the differential equation

0
&F(Z) = f(2),

has no solution in the space M of non-holomorphic modular forms, [4].

On the other hand, modular invariant primitives of cusp forms can be constructed
in the bigger space M' of non-holomorphic modular forms which are allowed to have
poles at ico. The main result is as follows.

Theorem 6.13 (Theorem 1.1. in [6]). For every cuspidal Hecke eigenform of weight
k for SLy(Z), there exists a unique family

H(f)rs € M., forallr+s=k rs>0
satisfying the system of differential equations

OH(f)rs = (r + DH( 1,61, if s> 1,

OM(f)rs = (s + DH(f)rrsr1, ifr>1,
and

OM(flko =Lf, OH(flon =Ls(f).

The H(f)rs are eigenfunctions of the Laplace operator with eigenvalue k. Equiva-
lently, the L'H(f),.s are harmonic: AL'H(f),, = 0.

3This is easier to see with the version of Eichler—Shimura stated in Appendix B.3.
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We do not attempt to explain the proof of the above result which occupies most
of [6]. However, let us say a few words about the element s(f) which is one of the
main differences to the case of Eisenstein series. It equals

njwy tupwy wiwy
s(f)=|=—F—F=|f+|—="=|1
MWy + 15y MWyl Wy
where wjjf are the periods of f, njf its quasi-periods and f’ is a certain weak Hecke
eigencusp form naturally associated to f.

We end by mentioning that the functions H(f),s constructed in Theorem 6.13
are also closely related to weak harmonic Maass forms of integer weight, and in par-
ticular to weak harmonic lifts. The construction also gives a conceptual explanation
for algebraicity of Fourier coefficients of certain mock modular forms associated to

modular forms with complex multiplication. For all of this, we refer to Brown’s
original work [6].

APPENDIX A. EISENSTEIN SERIES AND THEIR FOURIER EXPANSION

In this appendix we describe how to compute the Fourier expansion of several
variants of Fisenstein series. We first describe the basic tool for doing this. The
reference is [22].

A.1. The Poisson summation formula. Let ¢ : R — C be a continuous function
which satisfies the growth condition ¢(z) = O(|z|~¢) for some ¢ > 1 if |z| — oo.
Then the function ® : R — C given by

() = 3 pla+n)

nez

is well-defined and continuous (since the above sum converges absolutely and locally
uniformly). Moreover, it is clearly one-periodic, ®(z + 1) = ®(z) and therefore has

a Fourier expansion ®(z) = Y, _, a,e*™*, with coefficients a, = fol (t)e 2mirtdt.

Proposition A.1 (Poisson summation). We have

o) =Y ( /R gp(t)em”dt> g2,

rez

Proof. By what was said above, the formula is equivalent to

a :/gp(t)e_zmrtdt.
R

Indeed, we have

1 1 n+1
a, = / (I)(t>e—2mrtdt — / Z (,O(t + n>€—2mr(t+n)dt — Z/ (,0(15)6_2mrtdt
0 0 nez v m

nez

:/90<t>€—27rirtdt'
R

In the remainder of this section we give two applications of this result.
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A.2. Holomorphic Eisenstein series. As a first application of Poisson summa-
tion, we will compute the Fourier expansion of the non-normalized Eisenstein series

! 1
G%(Z) = Z (mz—l—n)%
(m,n)eZ?

which is related to the Hecke-normalized Eisenstein series introduced in Section 1
by Gop(z) = 2 2ri)° ng( ). Splitting the sum into terms with m = 0 and m # 0

(2k i
Gax(2) = Z 2k+zz (mz + n)?

respectively, we get

(8) n€Z\{0} m#0 neZ
=2 2/{: 2
C(2k) + mz>1 % (mz +n)%’

To proceed further, we now establish the following result known as Lipschitz’ for-
mula.

Proposition A.2. For every k > 2 and z = x + 1y with y > 0, we have

1 27?2 1y
Z(z+n) Z .

neE”L

Proof. Applying the Poisson summation formula to the function z — (z + iy) 2

(y > 0 fixed) gives

Z 1 Z (/ €—2m'rt > o Z ( co+1Y e—2mrt o
—_— = —dt e TITrT — / dt) 7T’LT‘Z‘
= (z+iy+n)* g (t +1y)? —ootiy

reZ reZl

The integrals in the final sum can now be evaluated using the residue theorem and

this gives
oco+1y e—27rirt 0 r S O
/ o A= (Com® oy
—ootiy L r r >0,

(2k—1)!

from which the result follows. O
Plugging Proposition A.2 into (8), we get

2(2mi)%* &

Gar(2) = 2¢(2k) + k1)1

UQk—l(n)qn7
where oy(n) = >, d'. In particular, we also obtain

2k — 1)! 26)(2k — 1) &
Gar(z) = W@%(Z‘) = i ZU% 1(

= B2k+202k 1(n)q",

where in the last equation we used Euler’s theorem

C(2k) = ——32582)?%, k> 1,
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which can also be proved using Poisson summation (see for example [14], Section

111.3).

A.3. Real analytic Eisenstein series. As a final example, consider the real ana-
lytic Eisenstein series
S

1 ’ Y
1) = — . A—
(Z’S) 2 Z |mz+n|25’
(m,n)eZ?

defined for z € $ and Re(s) > 1. It is related to the real analytic Eisenstein
series Gj(z) introduced in Section 6.4 via the formula F(z,s) = ({(2s))7'G5(2).
Computing its Fourier expansion can again be done using the Possion summation
formula but the execution is somewhat more involved than for Ggx(z). We refer to
[22], Section 3A for the details and just state the final result:

m2l(s — 1¢(2s — 1 21 a1
Ble.s) = Cloapy+ TS e B S o (K onlaly)e
#0

where K, (t) = [; e <" cosh(vu)du for v € C and ¢ > 0 denotes the K-Bessel
function and o7 (n) := |n|" >_,, d™* is a modified divisor function.

An important consequence is that the function s — G(z,s) can be meromor-
phically continued to the entire complex plane and the completed Eisenstein series
G*(z,s) := n°T'(s)G(z, s) satisfies a functional equation. We summarize this and
the Fourier expansion in the following proposition.

Proposition A.3. The function G*(z, s) has analytic continuation to C\{0,1} and
has stmple poles at s = 1, s = 0 with residues % and —% respectively. Furthermore, it
satisfies the functional equation G*(z,s) = G*(z,1—s) and has the Fourier expansion

G*(2,8) = C*(28)y" + C*(2s — )y 5 + 22 Z ol |n| (27T|n|y) 2mine,
n#0

where (*(s) := 2L (£) ((s).

Proof. Both the meromorphic continuation as well as the location and residues of
the poles follow from the fact that o%(¢) and K, (t) are entire functions of v and
that *(s) has a meromorphic continuation to the complex plane with simple poles
at s = 0, s = 1 with residues —1 and 1 respectively. The functional equation of
G*(z,s) likewise follows from the functional equation (*(1 — s) = (*(s) together
with o* (t) = o}(t) and K_,(t) = K,(t), both of which are immediate from the
definition. U

Remark A.4. The Fourier expansion of G* can be used to prove Kronecker’s first
limit formula

s—1 3—1

lim (G*(z,s) _ 12 ) = —ilog(y12|A(z)|2) +C,

where C' = 27— Llog 4w, (v =Euler’s constant). Together with modular invariance of
G*(z, s), it gives a new proof that A(z) is a modular form of weight 12. However, its
main applications are in number theory where it can be used to construct solutions
to Pell’s equation. For this and more, we refer to [16].
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APPENDIX B. COHOMOLOGICAL APPROACH TO PERIODS OF MODULAR FORMS

In this appendix we interpret some of the structures we encountered so far in
our study of periods of modular forms using the language of group cohomology.
In particular, we rephrase the Eichler-Shimura theorem as a statement which re-
lates modular forms to group cohomology of SLy(Z) with coefficients in spaces of
homogeneous polynomials.

To this end, we begin by presenting the bare minimum of the language of group
cohomology required for our purposes, in particular several important concepts, such
as relative cohomology or cup products, have been omitted. We refer to [18] for an
extensive and very systematic introduction and to [1] for a quick, if perhaps slightly
outdated, one.

B.1. Generalities on group cohomology. Let G be a group and V be a right
G-module, i.e. V is a Z-module (aka abelian group) together with a right action

VxG—=V, (v,g9)vlg,

of G which is compatible with the Z-module structure of V. To these, one can
associate cohomology groups { H(G; V') }i>o, [18]. To compute these groups, consider
the following cochain complex

i—1 A i A il
o — O G V) — CHGV) — O G V) — .
Here C'(G;V) = {p : G* — V} is the set of all maps from the i-fold cartesian

product of G into V', and the differential in degree 7 is given by

i—1
(d'@)(g1s- -+ gir1) = @(g1, -+, gi)|gis1 + Z(—l)jH@(gl, s Yimjimj1s - Git1)
j=0

+ (=) o(g1,- .-, 90)-

Elements of ker(d) (respectively of Im(d)) are called cocycles (respectively cobound-
aries), and one has

H'(G;V) 2 ker(d")/ Tm(d"™).
In the cases ¢ = 0,1, which will be the only cases of interest for us, we have the

following very explicit descriptions. The group H°(G;V) is simply the group of
invariants

HY G V)=V .={veV]|vlg=uv, Vg€ G},
and H'(G;V) is isomorphic to the quotient of the group of crossed homomorphisms

ker(d') ={f: G = V| f(9192) = f(g1)lg2 + [(92), V91,92 € G}

by the subgroup of those coming from elements of V|

Im(d”) ={f:G—V|IweV, flg) =v|g, Vg € G}.
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B.2. The case SLy(Z). For us the case of interest will be G = SLy(Z) and the
coeflicients will be V}, = ®0§n§k—2 QX"Y* 27" for some even integer k > 2 with its
SLy(Z)-right action as described in Section 3.1. In this case, we have

Q k=2

0) koo A HELAZ)V) = {0} 22

HO(SLy(Z); Vi) =2 V@ {

For the first statement, note that a polynomial f € V} is invariant under the action
of the translation 7' if and only if f = aX*~2 for some a € Q, and that aX*72|S =

a(=Y)k2 so that a = 0 if f € V:LQ(Z), for £ > 2. The second statement can
be shown using geometric reasoning, namely because SLy(Z) can be realized as the
fundamental group of a non-compact Riemann surface. Therefore, the only group of
interest is H'(SLy(Z), Vi) which will be described in the next two subsections using
modular forms.

B.3. The Eichler—Shimura isomorphism revisited. Recall from Section 6.2
that to a modular form f € My, we have associated the indefinite integral I(z)
which takes values in V;, ® C.

Proposition B.1. The map
pr:SLa(Z) > Vi@ C, v Ip(y.2)ly — If(2).
does not depend on the choice of z and is a right SLy(Z)-cocycle.

In fact, this map already appeared in Section 6.2 as the monodromy of the integral
If(Z).
Proof. Tt follows from SLy(Z)-invariance of f that both I;(z) and If(y.z)|y are
solutions to the differential equation dg = —f, and therefore differ by a constant.
For the cocycle equation, by definition we have
wr(n2) = 1r((1m72)-2) iy — 15(2).
Since I¢(z) = —@¢(y2) + If(72.2)|4,, the preceding equality becomes

er(ny2) = L ((M72)-2) i — L (72:2) [, + @5 (72)
= 01 (M)l + 2 (72)-
O

Since the assignment f +— Iy(z) is clearly C-linear, the preceding proposition
implies that we get a map

(W] : My, — H'(SLo(Z), Vi) ® C,  f — [p4],

of C-vector spaces, where [pf| denotes the cohomology class of the cocycle ¢y.

Now conjugation with the element ¢ = ({ %) on V} induces an involution on the

level of cochain complexes
C*(SLa(Z), Vi) = C*(SLa(Z), Vi)

and therefore we can split the cohomology into the corresponding +1-eigenspaces
under that involution,

HY(SLy(Z), Vi) = H'(SLa(Z), Vi)* @ H(SLo(Z), Vi)~
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Also, let M C M, be the R-vector subspace of modular forms with real Fourier
coefficients, and define S§ C Sy, likewise. With this, we can finally state the coho-
mological version of Theorem 4.2.

Theorem B.2 (Eichler-Shimura-Manin). The morphisms
[Re(y)] : S — H'(SLo(Z), Vi)" @ R
[tm(e)] : My' — H'(SLo(Z), Vi)~ @R,
are isomorphisms of R-vector spaces.

Remark B.3. (i) That [Re(v))] is well-defined follows from from the even peri-
ods of f € S¥ being real numbers. Indeed,
(2mi) " pn(f) = (2mi)F (2)z"dz € R,
0
since f has real Fourier coefficients. A similar argument combined with
Proposition 6.5 (for the case of Eisenstein series) shows that [Im(¢))] is well-
defined.

(ii) Theorem B.2 says in particular that [Re(¢q,, )] = 0, i.e. Re(¢y) is a cobound-
ary if f is an Eisenstein series, which also follows from Proposition 6.5. This
is the key reason why the construction of the modular invariant primitive of
(91, in Section 6.3 worked.
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